Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masayuki Shirakura is active.

Publication


Featured researches published by Masayuki Shirakura.


Nature | 2013

Characterization of H7N9 influenza A viruses isolated from humans.

Tokiko Watanabe; Maki Kiso; Satoshi Fukuyama; Noriko Nakajima; Masaki Imai; S. Yamada; Shin Murakami; Seiya Yamayoshi; Kiyoko Iwatsuki-Horimoto; Yoshihiro Sakoda; Emi Takashita; Ryan McBride; Takeshi Noda; Masato Hatta; Hirotaka Imai; Dongming Zhao; Noriko Kishida; Masayuki Shirakura; Robert P. de Vries; Shintaro Shichinohe; Masatoshi Okamatsu; Tomokazu Tamura; Yuriko Tomita; Naomi Fujimoto; Kazue Goto; Hiroaki Katsura; Eiryo Kawakami; Izumi Ishikawa; Shinji Watanabe; Mutsumi Ito

Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.


Journal of Virology | 2007

E6AP Ubiquitin Ligase Mediates Ubiquitylation and Degradation of Hepatitis C Virus Core Protein

Masayuki Shirakura; Kyoko Murakami; Tohru Ichimura; Ryosuke Suzuki; Tetsu Shimoji; Kouichirou Fukuda; Katsutoshi Abe; Shigeko Sato; Masayoshi Fukasawa; Yoshio Yamakawa; Masahiro Nishijima; Kohji Moriishi; Yoshiharu Matsuura; Takaji Wakita; Tetsuro Suzuki; Peter M. Howley; Tatsuo Miyamura; Ikuo Shoji

ABSTRACT Hepatitis C virus (HCV) core protein is a major component of viral nucleocapsid and a multifunctional protein involved in viral pathogenesis and hepatocarcinogenesis. We previously showed that the HCV core protein is degraded through the ubiquitin-proteasome pathway. However, the molecular machinery for core ubiquitylation is unknown. Using tandem affinity purification, we identified the ubiquitin ligase E6AP as an HCV core-binding protein. E6AP was found to bind to the core protein in vitro and in vivo and promote its degradation in hepatic and nonhepatic cells. Knockdown of endogenous E6AP by RNA interference increased the HCV core protein level. In vitro and in vivo ubiquitylation assays showed that E6AP promotes ubiquitylation of the core protein. Exogenous expression of E6AP decreased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected Huh-7 cells. Furthermore, knockdown of endogenous E6AP by RNA interference increased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected cells. Taken together, our results provide evidence that E6AP mediates ubiquitylation and degradation of HCV core protein. We propose that the E6AP-mediated ubiquitin-proteasome pathway may affect the production of HCV particles through controlling the amounts of viral nucleocapsid protein.


PLOS ONE | 2013

Antiviral Lectins from Red and Blue-Green Algae Show Potent In Vitro and In Vivo Activity against Hepatitis C Virus

Yutaka Takebe; Carrie J. Saucedo; Garry Lund; Rie Uenishi; Saiki Hase; Takayo Tsuchiura; Norman M. Kneteman; Koreen Ramessar; D. Lorne Tyrrell; Masayuki Shirakura; Takaji Wakita; James B. McMahon; Barry R. O'Keefe

Hepatitis C virus (HCV) infection is a significant public health problem with over 170,000,000 chronic carriers and infection rates increasing worldwide. Chronic HCV infection is one of the leading causes of hepatocellular carcinoma which was estimated to result in ∼10,000 deaths in the United States in the year 2011. Current treatment options for HCV infection are limited to PEG-ylated interferon alpha (IFN-α), the nucleoside ribavirin and the recently approved HCV protease inhibitors telaprevir and boceprevir. Although showing significantly improved efficacy over the previous therapies, treatment with protease inhibitors has been shown to result in the rapid emergence of drug-resistant virus. Here we report the activity of two proteins, originally isolated from natural product extracts, which demonstrate low or sub-nanomolar in vitro activity against both genotype I and genotype II HCV. These proteins inhibit viral infectivity, binding to the HCV envelope glycoproteins E1 and E2 and block viral entry into human hepatocytes. In addition, we demonstrate that the most potent of these agents, the protein griffithsin, is readily bioavailable after subcutaneous injection and shows significant in vivo efficacy in reducing HCV viral titers in a mouse model system with engrafted human hepatocytes. These results indicate that HCV viral entry inhibitors can be an effective component of anti-HCV therapy and that these proteins should be studied further for their therapeutic potential.


Emerging Infectious Diseases | 2010

Oseltamivir-resistant influenza viruses A (H1N1) during 2007-2009 influenza seasons, Japan.

Makoto Ujike; Kozue Shimabukuro; Kiku Mochizuki; Masatsugu Obuchi; Tsutomu Kageyama; Masayuki Shirakura; Noriko Kishida; Kazuyo Yamashita; Hiroshi Horikawa; Yumiko Kato; Nobuyuki Fujita; Masato Tashiro; Takato Odagiri

Prevalence of these viruses increased during the 2008–09 season.


Journal of Cellular Biochemistry | 2009

Identification of annexin A1 as a novel substrate for E6AP-mediated ubiquitylation†

Tetsu Shimoji; Kyoko Murakami; Yuichi Sugiyama; Mami Matsuda; Sachiko Inubushi; Junichi Nasu; Masayuki Shirakura; Tetsuro Suzuki; Takaji Wakita; Tatsuya Kishino; Hak Hotta; Tatsuo Miyamura; Ikuo Shoji

E6‐associated protein (E6AP) is a cellular ubiquitin protein ligase that mediates ubiquitylation and degradation of p53 in conjunction with the high‐risk human papillomavirus E6 proteins. However, the physiological functions of E6AP are poorly understood. To identify a novel biological function of E6AP, we screened for binding partners of E6AP using GST pull‐down and mass spectrometry. Here we identified annexin A1, a member of the annexin superfamily, as an E6AP‐binding protein. Ectopic expression of E6AP enhanced the degradation of annexin A1 in vivo. RNAi‐mediated downregulation of endogenous E6AP increased the levels of endogenous annexin A1 protein. E6AP interacted with annexin A1 and induced its ubiquitylation in a Ca2+‐dependent manner. GST pull‐down assay revealed that the annexin repeat domain III of annexin A1 is important for the E6AP binding. Taken together, our data suggest that annexin A1 is a novel substrate for E6AP‐mediated ubiquitylation. Our findings raise the possibility that E6AP may play a role in controlling the diverse functions of annexin A1 through the ubiquitin‐proteasome pathway. J. Cell. Biochem. 106: 1123–1135, 2009.


Antimicrobial Agents and Chemotherapy | 2015

Characterization of a Large Cluster of Influenza A(H1N1)pdm09 Viruses Cross-Resistant to Oseltamivir and Peramivir during the 2013-2014 Influenza Season in Japan

Emi Takashita; Maki Kiso; Seiichiro Fujisaki; Masaru Yokoyama; Kazuya Nakamura; Masayuki Shirakura; Hironori Sato; Takato Odagiri; Yoshihiro Kawaoka; Masato Tashiro

ABSTRACT Between September 2013 and July 2014, 2,482 influenza 2009 pandemic A(H1N1) [A(H1N1)pdm09] viruses were screened in Japan for the H275Y substitution in their neuraminidase (NA) protein, which confers cross-resistance to oseltamivir and peramivir. We found that a large cluster of the H275Y mutant virus was present prior to the main influenza season in Sapporo/Hokkaido, with the detection rate for this mutant virus reaching 29% in this area. Phylogenetic analysis suggested the clonal expansion of a single mutant virus in Sapporo/Hokkaido. To understand the reason for this large cluster, we examined the in vitro and in vivo properties of the mutant virus. We found that it grew well in cell culture, with growth comparable to that of the wild-type virus. The cluster virus also replicated well in the upper respiratory tract of ferrets and was transmitted efficiently between ferrets by way of respiratory droplets. Almost all recently circulating A(H1N1)pdm09 viruses, including the cluster virus, possessed two substitutions in NA, V241I and N369K, which are known to increase replication and transmission fitness. A structural analysis of NA predicted that a third substitution (N386K) in the NA of the cluster virus destabilized the mutant NA structure in the presence of the V241I and N369K substitutions. Our results suggest that the cluster virus retained viral fitness to spread among humans and, accordingly, caused the large cluster in Sapporo/Hokkaido. However, the mutant NA structure was less stable than that of the wild-type virus. Therefore, once the wild-type virus began to circulate in the community, the mutant virus could not compete and faded out.


Biochemical and Biophysical Research Communications | 2008

Trans-encapsidation of hepatitis C virus subgenomic replicon RNA with viral structure proteins.

Koji Ishii; Kyoko Murakami; Su Su Hmwe; Bin Zhang; Jin Li; Masayuki Shirakura; Kenichi Morikawa; Ryosuke Suzuki; Tatsuo Miyamura; Takaji Wakita; Tetsuro Suzuki

A trans-packaging system for hepatitis C virus (HCV) subgenomic replicon RNAs was developed. HCV subgenomic replicon was efficiently encapsidated by the HCV structural proteins that were stably expressed in trans under the control of a mammalian promoter. Infectious HCV-like particles (HCV-LPs), established a single-round infection, were produced and released into culture medium in titers of up to 10(3) focus forming units/ml. Expression of NS2 protein with structural proteins (core, E1, E2, and p7) was shown to be critical for the infectivity of HCV-LPs. Anti-CD81 treatment decreased the number of infected cells, suggesting that HCV-LPs infected cells in a CD81-dependent manner. The packaging cell line should be useful both for the production of single-round infectious HCV-LPs to elucidate the mechanisms of HCV assembly, particle formation and infection to host cells, and for the development of HCV replicon-based vaccines.


Virology | 2012

Trans-complemented hepatitis C virus particles as a versatile tool for study of virus assembly and infection

Ryosuke Suzuki; Kenji Saito; Takanobu Kato; Masayuki Shirakura; Daisuke Akazawa; Koji Ishii; Hideki Aizaki; Yumi Kanegae; Yoshiharu Matsuura; Izumu Saito; Takaji Wakita; Tetsuro Suzuki

In this study, we compared the entry processes of trans-complemented hepatitis C virus particles (HCVtcp), cell culture-produced HCV (HCVcc) and HCV pseudoparticles (HCVpp). Anti-CD81 antibody reduced the entry of HCVtcp and HCVcc to almost background levels, and that of HCVpp by approximately 50%. Apolipoprotein E-dependent infection was observed with HCVtcp and HCVcc, but not with HCVpp, suggesting that the HCVtcp system is more relevant as a model of HCV infection than HCVpp. We improved the productivity of HCVtcp by introducing adapted mutations and by deleting sequences not required for replication from the subgenomic replicon construct. Furthermore, blind passage of the HCVtcp in packaging cells resulted in a novel mutation in the NS3 region, N1586D, which contributed to assembly of infectious virus. These results demonstrate that our plasmid-based system for efficient production of HCVtcp is beneficial for studying HCV life cycles, particularly in viral assembly and infection.


Emerging Infectious Diseases | 2014

Complete genome of hepatitis E virus from laboratory ferrets.

Tian-Cheng Li; Tingting Yang; Yasushi Ami; Yuriko Suzaki; Masayuki Shirakura; Noriko Kishida; Hideki Asanuma; Naokazu Takeda; Wakita Takaji

The complete genome of hepatitis E virus (HEV) from laboratory ferrets imported from the United States was identified. This virus shared only 82.4%–82.5% nt sequence identities with strains from the Netherlands, which indicated that the ferret HEV genome is genetically diverse. Some laboratory ferrets were contaminated with HEV.


Virus Research | 2012

Genetics and infectivity of H5N1 highly pathogenic avian influenza viruses isolated from chickens and wild birds in Japan during 2010-11.

Yuko Uchida; Yasushi Suzuki; Masayuki Shirakura; Akira Kawaguchi; Eri Nobusawa; Taichiro Tanikawa; Hirokazu Hikono; Nobuhiro Takemae; Masaji Mase; Katsushi Kanehira; Tsuyoshi Hayashi; Yuichi Tagawa; Masato Tashiro; Takehiko Saito

Outbreaks of H5N1 subtype highly pathogenic avian influenza virus (HPAIV) were recorded in chickens, domesticated birds and wild birds throughout Japan from November 2010 to March 2011. Genetic analysis of the Japanese isolates indicated that all gene segments, except the PA gene, were closely related to Japanese wild bird isolates in 2008 and belonged to clade 2.3.2.1 classified by the WHO/OIE/FAO H5N1 Evolution Working Group. Direct ancestors of the PA gene segment of all Japanese viruses analyzed in this study can be found in wild bird strains of several subtypes other than H5N1 isolated between 2007 and 2009. The PA gene of these wild bird isolates share a common ancestor with H5N1 HPAIVs belonging to clades 2.5, 7 and 9, indicating that wild birds were involved in the emergence of the current reassortant 2.3.2.1 viruses. To determine how viruses were maintained in the wild bird population, two isolates derived from chickens (A/chicken/Shimane/1/2010, Ck10 and A/chicken/Miyazaki/S4/2011, CkS411) and one from a wild bird (A/mandarin duck/Miyazaki/22M-765/2011, MandarinD11) were compared in their ability to infect and be transmitted to chickens. There was a significant difference in the survival of chickens that were infected with 10(6)EID(50) of CkS411 compared to those with MandarinD11 and the transmission efficiency of CkS411 was greater than the other viruses. The increased titer of CkS411 excreted from infected chickens contributed to the improved transmission rates. It was considered that reduced virus excretion and transmission of MandarinD11 could have been due to adaptation of the virus in wild birds.

Collaboration


Dive into the Masayuki Shirakura's collaboration.

Top Co-Authors

Avatar

Noriko Kishida

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Takato Odagiri

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Seiichiro Fujisaki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emi Takashita

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Takaji Wakita

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kazuya Nakamura

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shinji Watanabe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tomoko Kuwahara

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tsutomu Kageyama

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge