Massimo Marenzana
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Massimo Marenzana.
Journal of Bone and Mineral Research | 2009
Alison Eddleston; Massimo Marenzana; Adrian Moore; Paul E. Stephens; Mariusz Muzylak; Diane Marshall; Martyn K. Robinson
Chronic inflammation leads to bone loss, and increased fracture rates have been reported in a number of human chronic inflammatory conditions. The study reported here investigates the skeletal effects of dosing a neutralizing antibody to the bone regulatory protein sclerostin in a mouse model of chronic colitis. When dosed prophylactically, an antibody to sclerostin (Scl‐AbI) did not reduce the weight loss or histological changes associated with colitis but did prevent inflammation‐induced bone loss. At the end of the experiment, Scl‐AbI–treated animals had a significantly higher femoral BMD (+27%, p < 0.05) than control antibody (Cntrl‐Ab)‐treated animals. In a second experiment, treatment with Scl‐AbI was delayed until colitis had developed, by which time the mechanical properties of femurs in colitic animals were significantly worse than those of healthy age‐matched control mice (maximum load, −26%, p < 0.05; energy, −37%, p < 0.05; ultimate strength, −33%, p < 0.05; elastic modulus, −17%, p < 0.05). A short treatment with Scl‐AbI halted bone loss and reversed the decline of both intrinsic and extrinsic mechanical properties of the femur such that, after 19 days of treatment, the bone mechanical properties in the Scl‐AbI–treated animals were not significantly different from those of noncolitic age‐matched controls. Serum markers of bone formation and resorption suggested that the antibody to sclerostin stimulated osteoblast activity and inhibited osteoclast‐mediated bone resorption.
Bone research | 2013
Massimo Marenzana; Timothy R. Arnett
The importance of the vascular supply for bone is well-known to orthopaedists but is still rather overlooked within the wider field of skeletal research. Blood supplies oxygen, nutrients and regulatory factors to tissues, as well as removing metabolic waste products such as carbon dioxide and acid. Bone receives up to about 10% of cardiac output, and this blood supply permits a much higher degree of cellularity, remodelling and repair than is possible in cartilage, which is avascular. The blood supply to bone is delivered to the endosteal cavity by nutrient arteries, then flows through marrow sinusoids before exiting via numerous small vessels that ramify through the cortex. The marrow cavity affords a range of vascular niches that are thought to regulate the growth and differentiation of hematopoietic and stromal cells, in part via gradients of oxygen tension. The quality of vascular supply to bone tends to decline with age and may be compromised in common pathological settings, including diabetes, anaemias, chronic airway diseases and immobility, as well as by tumours. Reductions in vascular supply are associated with bone loss. This may be due in part to the direct effects of hypoxia, which blocks osteoblast function and bone formation but causes reciprocal increases in osteoclastogenesis and bone resorption. Common regulatory factors such as parathyroid hormone or nitrates, both of which are potent vasodilators, might exert their osteogenic effects on bone via the vasculature. These observations suggest that the bone vasculature will be a fruitful area for future research.
Physics in Medicine and Biology | 2012
Massimo Marenzana; Charlotte K. Hagen; Patricia Das Neves Borges; Marco Endrizzi; Magdalena B. Szafraniec; Konstantin Ignatyev; Alessandro Olivo
Being able to quantitatively assess articular cartilage in three-dimensions (3D) in small rodent animal models, with a simple laboratory set-up, would prove extremely important for the development of pre-clinical research focusing on cartilage pathologies such as osteoarthritis (OA). These models are becoming essential tools for the development of new drugs for OA, a disease affecting up to 1/3 of the population older than 50 years for which there is no cure except prosthetic surgery. However, due to limitations in imaging technology, high-throughput 3D structural imaging has not been achievable in small rodent models, thereby limiting their translational potential and their efficiency as research tools. We show that a simple laboratory system based on coded-aperture x-ray phase contrast imaging (CAXPCi) can correctly visualize the cartilage layer in slices of an excised rat tibia imaged both in air and in saline solution. Moreover, we show that small, surgically induced lesions are also correctly detected by the CAXPCi system, and we support this finding with histopathology examination. Following these successful proof-of-concept results in rat cartilage, we expect that an upgrade of the system to higher resolutions (currently underway) will enable extending the method to the imaging of mouse cartilage as well. From a technological standpoint, by showing the capability of the system to detect cartilage also in water, we demonstrate phase sensitivity comparable to other lab-based phase methods (e.g. grating interferometry). In conclusion, CAXPCi holds a strong potential for being adopted as a routine laboratory tool for non-destructive, high throughput assessment of 3D structural changes in murine articular cartilage, with a possible impact in the field similar to the revolution that conventional microCT brought into bone research.
Osteoarthritis and Cartilage | 2014
P Das Neves Borges; A.E. Forte; Tonia L. Vincent; D. Dini; Massimo Marenzana
Summary Objective Mouse articular cartilage (AC) is mostly assessed by histopathology and its mechanics is poorly characterised. In this study: (1) we developed non-destructive imaging for quantitative assessment of AC morphology and (2) evaluated the mechanical implications of AC structural changes. Methods Knee joints obtained from naïve mice and from mice with osteoarthritis (OA) induced by destabilization of medial meniscus (DMM) for 4 and 12 weeks, were imaged by phosphotungstic acid (PTA) contrast enhanced micro-computed tomography (PTA-CT) and scored by conventional histopathology. Our software (Matlab) automatically segmented tibial AC, drew two regions centred on each tibial condyle and evaluated the volumes included. A finite element (FE) model of the whole mouse joint was implemented to evaluate AC mechanics. Results Our method achieved rapid, automated analysis of mouse AC (structural parameters in <10 h from knee dissection) and was able to localise AC loss in the central region of the medial tibial condyle. AC thickness decreased by 15% at 4 weeks and 25% at 12 weeks post DMM surgery, whereas histopathology scores were significantly increased only at 12 weeks. FE simulations estimated that AC thinning at early-stages in the DMM model (4 weeks) increases contact pressures (+39%) and Tresca stresses (+43%) in AC. Conclusion PTA-CT imaging is a fast and simple method to assess OA in murine models. Once applied more extensively to confirm its robustness, our approach will be useful for rapidly phenotyping genetically modified mice used for OA research and to improve the current understanding of mouse cartilage mechanics.
Arthritis Research & Therapy | 2013
Massimo Marenzana; Alex Vugler; Adrian Moore; Martyn K. Robinson
IntroductionPatients with chronic inflammatory diseases have increased bone loss and bone fragility and are at increased risk of fracture. Although anti-resorptive drugs are effective in blocking inflammation-induced bone loss, they are less effective at rebuilding bone. We have previously shown that treatment with sclerostin antibody (Scl-AbI) builds bone and can prevent or restore bone loss in a murine model of inflammatory bowel disease. In this study, we tested the effect of Scl-AbI in a murine model of rheumatoid arthritis (the collagen-induced arthritis model, CIA). We hypothesised that sclerostin blockade can protect and restore bone both locally and systemically without affecting progression of inflammation.MethodsCIA was induced in male DBA/1 mice, which were treated with either PBS or Scl-AbI (10 mg/kg, weekly) prophylactically for 55 days or therapeutically for 21 days (starting 14 days post onset of arthritis). Systemic inflammation was assessed by measuring the serum concentration of anti-CII IgG1, IgG2a and IgG2b by ELISA. Changes in bone mass and structure, either at sites remote from the joints or at periarticular sites, were measured using DEXA and microCT. Bone focal erosion was assessed in microCT scans of ankle and knee joints.ResultsCirculating anti-CII immunoglobulins were significantly elevated in mice with CIA and there were no significant differences in the levels of anti-CII immunoglobulins in mice treated with PBS or Scl-ABI. Prophylactic Scl-AbI treatment prevented the decrease in whole body bone mineral density (BMD) and in the bone volume fraction at axial (vertebral body) and appendicular (tibial proximal metaphysis trabecular and mid-diaphysis cortical bone) sites seen in PBS-treated CIA mice, but did not prevent the formation of focal bone erosions on the periarticular bone in the knee and ankle joints. In the therapeutic study, Scl-AbI restored BMD and bone volume fraction at all assessed sites but was unable to repair focal erosions.ConclusionsSclerostin blockade prevented or reversed the decrease in axial and appendicular bone mass in the murine model of rheumatoid arthritis, but did not affect systemic inflammation and was unable to prevent or repair local focal erosion.
Stem Cells and Development | 2014
Gemma N. Jones; Dafni Moschidou; Hassan Abdulrazzak; Bhalraj Singh Kalirai; Maximilien Vanleene; Suchaya Osatis; Sandra J. Shefelbine; Nicole J. Horwood; Massimo Marenzana; Paolo De Coppi; J. H. Duncan Bassett; Graham R. Williams; Nicholas M. Fisk; Pascale V. Guillot
Osteogenesis imperfecta (OI) is a genetic bone pathology with prenatal onset, characterized by brittle bones in response to abnormal collagen composition. There is presently no cure for OI. We previously showed that human first trimester fetal blood mesenchymal stem cells (MSCs) transplanted into a murine OI model (oim mice) improved the phenotype. However, the clinical use of fetal MSC is constrained by their limited number and low availability. In contrast, human fetal early chorionic stem cells (e-CSC) can be used without ethical restrictions and isolated in high numbers from the placenta during ongoing pregnancy. Here, we show that intraperitoneal injection of e-CSC in oim neonates reduced fractures, increased bone ductility and bone volume (BV), increased the numbers of hypertrophic chondrocytes, and upregulated endogenous genes involved in endochondral and intramembranous ossification. Exogenous cells preferentially homed to long bone epiphyses, expressed osteoblast genes, and produced collagen COL1A2. Together, our data suggest that exogenous cells decrease bone brittleness and BV by directly differentiating to osteoblasts and indirectly stimulating host chondrogenesis and osteogenesis. In conclusion, the placenta is a practical source of stem cells for the treatment of OI.
Philosophical Transactions of the Royal Society A | 2014
Massimo Marenzana; Charlotte K. Hagen; Patricia Das Neves Borges; Marco Endrizzi; Magdalena B. Szafraniec; Tonia L. Vincent; Luigi Rigon; Fulvia Arfelli; Ralf-Hendrik Menk; Alessandro Olivo
The mouse model of osteoarthritis (OA) has been recognized as the most promising research tool for the identification of new OA therapeutic targets. However, this model is currently limited by poor throughput, dependent on the extremely time-consuming histopathology assessment of the articular cartilage (AC). We have recently shown that AC in the rat tibia can be imaged both in air and in saline solution using a laboratory system based on coded-aperture X-ray phase-contrast imaging (CAXPCi). Here, we explore ways to extend the methodology for imaging the much thinner AC of the mouse, by means of gold-standard synchrotron-based phase-contrast methods. Specifically, we have used analyser-based phase-contrast micro-computed tomography (micro-CT) for its high sensitivity to faint phase changes, coupled with a high-resolution (4.5 μm pixel) detector. Healthy, diseased (four weeks post induction of OA) and artificially damaged mouse AC was imaged at the Elettra synchrotron in Trieste, Italy, using the above method. For validation, we used conventional micro-CT combined with radiopaque soft-tissue staining and standard histomorphometry. We show that mouse cartilage can be visualized correctly by means of the synchrotron method. This suggests that: (i) further developments of the laboratory-based CAXPCi system, especially in terms of pushing the resolution limits, might have the potential to resolve mouse AC ex vivo and (ii) additional improvements may lead to a new generation of CAXPCi micro-CT scanners which could be used for in vivo longitudinal pre-clinical imaging of soft tissue at resolutions impossible to achieve by current MRI technology.
Proceedings of SPIE | 2013
Marco Endrizzi; Paul C. Diemoz; Magdalena B. Szafraniec; Charlotte K. Hagen; Thomas P. Millard; C. E. Zapata; P. Munro; Konstantin Ignatyev; Massimo Marenzana; Robert D. Speller; Alessandro Olivo
The edge illumination principle was first proposed at Elettra (Italy) in the late nineties, as an alternative method for achieving high phase sensitivity with a very simple and flexible set-up, and has since been under continuous development in the radiation physics group at UCL. Edge illumination allows overcoming most of the limitations of other phase-contrast techniques, enabling their translation into a laboratory environment. It is relatively insensitive to mechanical and thermal instabilities and it can be adapted to the divergent and polychromatic beams provided by X-ray tubes. This method has been demonstrated to work efficiently with source sizes up to 100m, compatible with state-of-the-art mammography sources. Two full prototypes have been built and are operational at UCL. Recent activity focused on applications such as breast and cartilage imaging, homeland security and detection of defects in composite materials. New methods such as phase retrieval, tomosynthesis and computed tomography algorithms are currently being theoretically and experimentally investigated. These results strongly indicate the technique as an extremely powerful and versatile tool for X-ray imaging in a wide range of applications.
PLOS ONE | 2017
P Das Neves Borges; Tonia L. Vincent; Massimo Marenzana
Objective The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. Methods OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Results Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Conclusion Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.
Journal of Instrumentation | 2014
Marco Endrizzi; Paul C. Diemoz; Charlotte K. Hagen; Fabio A. Vittoria; P. Munro; Luigi Rigon; Diego Dreossi; Fulvia Arfelli; F. C. M. Lopez; Renata Longo; Massimo Marenzana; Pasquale Delogu; A. Vincenzi; L. De Ruvo; G. Spandre; Alessandro Brez; R. Bellazzini; Alessandro Olivo
X-Ray Phase Contrast Imaging (XPCI) has been arguably the hottest topic in X-ray imaging research over the last two decades, due to the significant advantages it can bring to medicine, biology, material science and many other areas of application. Considerable progress has recently been achieved, in terms of the first in vivo implementations at synchrotrons (notably at Elettra in Trieste), and of new XPCI methods working with conventional sources. Among the latter, edge-illumination (EI) is possibly one of the most promising in terms of mainstream translation, due to set-up simplicity, scalability and flux efficiency compared to other approaches. EI is indeed the only method working with a completely incoherent source: however, it was recently demonstrated that neither the ability to perform quantitative phase retrieval, nor the methods phase sensitivity are affected by the sources incoherence. Here its implementation with different detector technologies is discussed.