Massimo Squatrito
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Massimo Squatrito.
Genes & Development | 2009
Ping Mu; Yoon Chi Han; Doron Betel; Evelyn Yao; Massimo Squatrito; Paul Ogrodowski; Elisa de Stanchina; Aleco D'Andrea; Chris Sander; Andrea Ventura
The miR-17 approximately 92 cluster is frequently amplified or overexpressed in human cancers and has emerged as the prototypical oncogenic polycistron microRNA (miRNA). miR-17 approximately 92 is a direct transcriptional target of c-Myc, and experiments in a mouse model of B-cell lymphomas have shown cooperation between these two oncogenes. However, both the molecular mechanism underlying this cooperation and the individual miRNAs that are responsible for it are unknown. By using a conditional knockout allele of miR-17 approximately 92, we show here that sustained expression of endogenous miR-17 approximately 92 is required to suppress apoptosis in Myc-driven B-cell lymphomas. Furthermore, we show that among the six miRNAs that are encoded by miR-17 approximately 92, miR-19a and miR-19b are absolutely required and largely sufficient to recapitulate the oncogenic properties of the entire cluster. Finally, by combining computational target prediction, gene expression profiling, and an in vitro screening strategy, we identify a subset of miR-19 targets that mediate its prosurvival activity.
Cell Stem Cell | 2010
Nikki Charles; Tatsuya Ozawa; Massimo Squatrito; Anne Marie Bleau; Cameron Brennan; Dolores Hambardzumyan; Eric C. Holland
eNOS expression is elevated in human glioblastomas and correlated with increased tumor growth and aggressive character. We investigated the potential role of nitric oxide (NO) activity in the perivascular niche (PVN) using a genetic engineered mouse model of PDGF-induced gliomas. eNOS expression is highly elevated in tumor vascular endothelium adjacent to perivascular glioma cells expressing Nestin, Notch, and the NO receptor, sGC. In addition, the NO/cGMP/PKG pathway drives Notch signaling in PDGF-induced gliomas in vitro, and induces the side population phenotype in primary glioma cell cultures. NO also increases neurosphere forming capacity of PDGF-driven glioma primary cultures, and enhances their tumorigenic capacity in vivo. Loss of NO activity in these tumors suppresses Notch signaling in vivo and prolongs survival of mice. This mechanism is conserved in human PDGFR amplified gliomas. The NO/cGMP/PKG pathways promotion of stem cell-like character in the tumor PVN may identify therapeutic targets for this subset of gliomas.
Nature | 2007
Chiara Gorrini; Massimo Squatrito; Chiara Luise; Nelofer Syed; Daniele Perna; Landon Wark; Francesca Martinato; Domenico Sardella; Alessandro Verrecchia; Samantha Bennett; Stefano Confalonieri; Matteo Cesaroni; Francesco Marchesi; Milena Gasco; Eugenio Scanziani; Maria Capra; Sabine Mai; Paolo Nuciforo; Tim Crook; John Lough; Bruno Amati
The acetyl-transferase Tip60 might influence tumorigenesis in multiple ways. First, Tip60 is a co-regulator of transcription factors that either promote or suppress tumorigenesis, such as Myc and p53. Second, Tip60 modulates DNA-damage response (DDR) signalling, and a DDR triggered by oncogenes can counteract tumour progression. Using Eμ–myc transgenic mice that are heterozygous for a Tip60 gene (Htatip) knockout allele (hereafter denoted as Tip60+/– mice), we show that Tip60 counteracts Myc-induced lymphomagenesis in a haplo-insufficient manner and in a time window that is restricted to a pre- or early-tumoral stage. Tip60 heterozygosity severely impaired the Myc-induced DDR but caused no general DDR defect in B cells. Myc- and p53-dependent transcription were not affected, and neither were Myc-induced proliferation, activation of the ARF–p53 tumour suppressor pathway or the resulting apoptotic response. We found that the human TIP60 gene (HTATIP) is a frequent target for mono-allelic loss in human lymphomas and head-and-neck and mammary carcinomas, with concomitant reduction in mRNA levels. Immunohistochemical analysis also demonstrated loss of nuclear TIP60 staining in mammary carcinomas. These events correlated with disease grade and frequently concurred with mutation of p53. Thus, in both mouse and human, Tip60 has a haplo-insufficient tumour suppressor activity that is independent from—but not contradictory with—its role within the ARF–p53 pathway. We suggest that this is because critical levels of Tip60 are required for mounting an oncogene-induced DDR in incipient tumour cells, the failure of which might synergize with p53 mutation towards tumour progression.
The EMBO Journal | 2002
Maddalena Donzelli; Massimo Squatrito; Dvora Ganoth; Avram Hershko; Michele Pagano; Giulio Draetta
The Cdc25 dual‐specificity phosphatases control progression through the eukaryotic cell division cycle by activating cyclin‐dependent kinases. Cdc25 A regulates entry into S‐phase by dephosphorylating Cdk2, it cooperates with activated oncogenes in inducing transformation and is overexpressed in several human tumors. DNA damage or DNA replication blocks induce phosphorylation of Cdc25 A and its subsequent degradation via the ubiquitin–proteasome pathway. Here we have investigated the regulation of Cdc25 A in the cell cycle. We found that Cdc25 A degradation during mitotic exit and in early G1 is mediated by the anaphase‐promoting complex or cyclosome (APC/C)Cdh1 ligase, and that a KEN‐box motif in the N‐terminus of the protein is required for its targeted degradation. Interestingly, the KEN‐box mutated protein remains unstable in interphase and upon ionizing radiation exposure. Moreover, SCF (Skp1/Cullin/F‐box) inactivation using an interfering Cul1 mutant accumulates and stabilizes Cdc25 A. The presence of Cul1 and Skp1 in Cdc25 A immunocomplexes suggests a direct involvement of SCF in Cdc25 A degradation during interphase. We propose that a dual mechanism of regulated degradation allows for fine tuning of Cdc25 A abundance in response to cell environment.
Cancer Cell | 2014
Tatsuya Ozawa; Markus Riester; Yu Kang Cheng; Jason T. Huse; Massimo Squatrito; Karim Helmy; Nikki Charles; Franziska Michor; Eric C. Holland
To understand the relationships between the non-GCIMP glioblastoma (GBM) subgroups, we performed mathematical modeling to predict the temporal sequence of driver events during tumorigenesis. The most common order of evolutionary events is 1) chromosome (chr) 7 gain and chr10 loss, followed by 2) CDKN2A loss and/or TP53 mutation, and 3) alterations canonical for specific subtypes. We then developed a computational methodology to identify drivers of broad copy number changes, identifying PDGFA (chr7) and PTEN (chr10) as driving initial nondisjunction events. These predictions were validated using mouse modeling, showing that PDGFA is sufficient to induce proneural-like gliomas and that additional NF1 loss converts proneural to the mesenchymal subtype. Our findings suggest that most non-GCIMP mesenchymal GBMs arise as, and evolve from, a proneural-like precursor.
Genes & Development | 2010
Tatsuya Ozawa; Cameron Brennan; Lu Wang; Massimo Squatrito; Takashi Sasayama; Mitsutoshi Nakada; Jason T. Huse; Alicia Pedraza; Satoshi Utsuki; Yoshie Yasui; Adesh Tandon; Elena I. Fomchenko; Hidehiro Oka; Ross L. Levine; Kiyotaka Fujii; Marc Ladanyi; Eric C. Holland
Gene rearrangement in the form of an intragenic deletion is the primary mechanism of oncogenic mutation of the epidermal growth factor receptor (EGFR) gene in gliomas. However, the incidence of platelet-derived growth factor receptor-α (PDGFRA) gene rearrangement in these tumors is unknown. We investigated the PDGFRA locus in PDGFRA-amplified gliomas and identified two rearrangements, including the first case of a gene fusion between kinase insert domain receptor (KDR) (VEGFRII) and the PDGFRA gene, and six cases of PDGFRA(Δ8, 9), an intragenic deletion rearrangement. The PDGFRA(Δ8, 9) mutant was common, being present in 40% of the glioblastoma multiformes (GBMs) with PDGFRA amplification. Tumors with these two types of PDGFRA rearrangement displayed histologic features of oligodendroglioma, and the gene products of both rearrangements showed constitutively elevated tyrosine kinase activity and transforming potential that was reversed by PDGFR blockade. These results suggest the possibility that these PDGFRA mutants behave as oncogenes in this subset of gliomas, and that the prevalence of such rearrangements may have been considerably underestimated.
Cancer Cell | 2010
Massimo Squatrito; Cameron Brennan; Karim Helmy; Jason T. Huse; John H.J. Petrini; Eric C. Holland
Maintenance of genomic integrity is essential for adult tissue homeostasis and defects in the DNA-damage response (DDR) machinery are linked to numerous pathologies including cancer. Here, we present evidence that the DDR exerts tumor suppressor activity in gliomas. We show that genes encoding components of the DDR pathway are frequently altered in human gliomas and that loss of elements of the ATM/Chk2/p53 cascade accelerates tumor formation in a glioma mouse model. We demonstrate that Chk2 is required for glioma response to ionizing radiation in vivo and is necessary for DNA-damage checkpoints in the neuronal stem cell compartment. Finally, we observed that the DDR is constitutively activated in a subset of human GBMs, and such activation correlates with regions of hypoxia.
Oncogene | 2004
Massimo Squatrito; Monica Mancino; Maddalena Donzelli; Liliana B. Areces; Giulio Draetta
EBP1 was identified as a protein that interacts with the ErbB-3 receptor and possibly contributes to transducing growth regulatory signals. The existence of EBP1 homologs across species from simple eukaryotes to humans and its wide tissue expression pattern suggest that EBP1 acts as a general signaling molecule. We provide evidence that EBP1 is localized to the cytoplasm and to the nucleolus, and that its nucleolar localization requires amino-acid sequences present at both the amino- and carboxy-terminus of the molecule. We also show that EBP1 overexpression inhibits proliferation of human fibroblasts, and that this effect is linked to its nucleolar localization. Using mass spectrometry we demonstrate that EBP1 is part of ribonucleoprotein complexes and associates with different rRNA species. It is becoming clear that cell growth and proliferation are actively coordinated with rRNA processing and ribosome assembly. Our findings indicate that EBP1 is a nucleolar growth-regulating protein, and we propose that it could represent a new link between ribosome biosynthesis and cell proliferation.
The EMBO Journal | 2011
Clare V. Lefave; Massimo Squatrito; Sandra Vorlová; Gina Rocco; Cameron Brennan; Eric C. Holland; Ying Xian Pan; Luca Cartegni
In tumours, aberrant splicing generates variants that contribute to multiple aspects of tumour establishment, progression and maintenance. We show that in glioblastoma multiforme (GBM) specimens, death‐domain adaptor protein Insuloma‐Glucagonoma protein 20 (IG20) is consistently aberrantly spliced to generate an antagonist, anti‐apoptotic isoform (MAP‐kinase activating death domain protein, MADD), which effectively redirects TNF‐α/TRAIL‐induced death signalling to promote survival and proliferation instead of triggering apoptosis. Splicing factor hnRNPH, which is upregulated in gliomas, controls this splicing event and similarly mediates switching to a ligand‐independent, constitutively active Recepteur d′Origine Nantais (RON) tyrosine kinase receptor variant that promotes migration and invasion. The increased cell death and the reduced invasiveness caused by hnRNPH ablation can be rescued by the targeted downregulation of IG20/MADD exon 16‐ or RON exon 11‐containing variants, respectively, using isoform‐specific knockdown or splicing redirection approaches. Thus, hnRNPH activity appears to be involved in the pathogenesis and progression of malignant gliomas as the centre of a splicing oncogenic switch, which might reflect reactivation of stem cell patterns and mediates multiple key aspects of aggressive tumour behaviour, including evasion from apoptosis and invasiveness.
Oncogene | 2012
Africa Fernandez-L; Massimo Squatrito; Paul A. Northcott; Aashir Awan; Eric C. Holland; Michael D. Taylor; Zaher Nahle; Anna Marie Kenney
Radiation therapy remains the standard of care for many cancers, including the malignant pediatric brain tumor medulloblastoma. Radiation leads to long-term side effects, whereas radioresistance contributes to tumor recurrence. Radio-resistant medulloblastoma cells occupy the perivascular niche. They express Yes-associated protein (YAP), a Sonic hedgehog (Shh) target markedly elevated in Shh-driven medulloblastomas. Here we report that YAP accelerates tumor growth and confers radioresistance, promoting ongoing proliferation after radiation. YAP activity enables cells to enter mitosis with un-repaired DNA through driving insulin-like growth factor 2 (IGF2) expression and Akt activation, resulting in ATM/Chk2 inactivation and abrogation of cell cycle checkpoints. Our results establish a central role for YAP in counteracting radiation-based therapies and driving genomic instability, and indicate the YAP/IGF2/Akt axis as a therapeutic target in medulloblastoma.