Matej Baláž
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matej Baláž.
Chemical Society Reviews | 2013
Peter Baláž; Marcela Achimovičová; Matej Baláž; Peter Billik; Zara Cherkezova-Zheleva; J.M. Criado; Francesco Delogu; Erika Dutková; Eric Gaffet; F.J. Gotor; Rakesh Kumar; Ivan Mitov; Tadej Rojac; Mamoru Senna; A. N. Streletskii; Krystyna Wieczorek-Ciurowa
The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references).
Acta Biomaterialia | 2014
Matej Baláž
Eggshell membrane (ESM) is a unique biomaterial, which is generally considered as waste. However, it has extraordinary properties which can be utilized in various fields and its potential applications are therefore now being widely studied. The first part of this review focuses on the chemical composition and morphology of ESM. The main areas of ESM application are discussed in the second part. These applications include its utilization as a biotemplate for the synthesis of nanoparticles; as a sorbent of heavy metals, organics, dyes, sulfonates and fluorides; as the main component of biosensors; in medicine; and various other applications. For each area of interest, a detailed literature survey is given.
International Journal of Pharmaceutics | 2015
Zdenka Bujňáková; Erika Dutková; Matej Baláž; Erika Turianicová; Peter Baláž
In this paper the stability of the arsenic sulfide (As4S4) nanosuspension prepared by wet milling in a circulation mill in the environment of copolymer Poloxamer 407 was studied. The obtained As4S4 particles in nanosuspension were of ∼ 100 nm in size. The influence of temperature and UV irradiation on the changes in physical and/or chemical properties was followed. Long-term stability was observed via particle size distribution and zeta potential measurements. Influence of UV irradiation was studied via UV-vis spectroscopy (UV-vis), photoluminicsence (PL) technique and Fourier transform infrared spectroscopy (FTIR) measurements. The best stability of the nanosuspension (24 weeks) was achieved when stored at 4°C and in the dark.
Journal of Materials Science | 2013
Matej Baláž; Peter Baláž; Georgi Tjuliev; Anton Zubrik; María J. Sayagués; Anna Zorkovská; Nina G. Kostova
Cystine-capped CdSe@ZnS nanocomposites were synthesized mechanochemically with the aim to prepare a material which could be used in medicine for biosensing applications. Although synthesized CdSe@ZnS nanocomposites were capped with l-cysteine, cystine was formed from l-cysteine during the milling process. It was proven that water plays the key role in this oxidative transformation. The novel material was characterized by the complex of physico-chemical methods (FTIR, XPS, SEM, EDX, surface area measurements) and CHNS analysis. The leakage of Cd2+ and Zn2+ ions into physiological solution was also studied.
Materials Science and Engineering: C | 2016
Peter Baláž; Matej Baláž; Erika Dutková; Anna Zorkovská; Jaroslav Kováč; Pavol Hronec; Mária Čaplovičová; Ján Mojžiš; Gabriela Mojžišová; A. Eliyas; Nina G. Kostova
CdS/ZnS nanocomposites have been prepared by a two-step solid-state mechanochemical synthesis. CdS has been prepared from cadmium acetate and sodium sulfide precursors in the first step. The obtained cubic CdS (hawleyite, JCPDS 00-010-0454) was then mixed in the second step with the cubic ZnS (sphalerite, JCPDS 00-005-0566) synthesized mechanochemically from the analogous precursors. The crystallite sizes of the new type CdS/ZnS nanocomposite, calculated based on the XRD data, were 3-4 nm for both phases. The synthesized nanoparticles have been further characterized by high-resolution transmission electron microscopy (HRTEM) and micro-photoluminescence (μPL) spectroscopy. The PL emission peaks in the PL spectra are attributed to the recombination of holes/electrons in the nanocomposites occurring in depth associated with Cd, Zn vacancies and S interstitials. Their photocatalytic activity was also measured. In the photocatalytic activity tests to decolorize Methyl Orange dye aqueous solution, the process is faster and its effectivity is higher when using CdS/ZnS nanocomposite, compared to single phase CdS. Very low cytotoxic activity (high viability) of the cancer cell lines (selected as models of living cells) has been evidenced for CdS/ZnS in comparison with CdS alone. This fact is in a close relationship with Cd(II) ions dissolution tested in a physiological solution. The concentration of cadmium dissolved from CdS/ZnS nanocomposites with variable Cd:Zn ratio was 2.5-5.0 μg.mL(-1), whereas the concentration for pure CdS was much higher - 53 μg.ml(-1). The presence of ZnS in the nanocrystalline composite strongly reduced the release of cadmium into the physiological solution, which simulated the environment in the human body. The obtained CdS/ZnS quantum dots can serve as labeling media and co-agents in future anti-cancer drugs, because of their potential in theranostic applications.
Journal of Materials Science | 2017
Peter Baláž; Matej Baláž; Marcela Achimovičová; Zdenka Bujňáková; Erika Dutková
The aim of this paper on recent development in chalcogenide mechanochemistry is to provide a comprehensive review of advances achieved in the field of mechanochemical synthesis of nanocrystalline binary, ternary and quaternary chalcogenides and their nanocomposites. The synthetic approaches from elements and compounds are reviewed. The current focus of mechanochemical synthesis is on materials with potential utilization in future. In order to demonstrate the suitability of mechanochemically prepared chalcogenides for various applications, the concrete examples of the utilization of these materials in materials engineering, bioimaging and cancer treatment are provided. The possibility of scaling for industrial applications is also reviewed. The simplification of the synthesis processes with their reproducibility and easy way of operation, ecological safety and the product extraordinariness (nanoscale aspects) emphasizes the suitability of mechanochemistry application in chalcogenide synthesis.
RSC Advances | 2016
Matej Baláž; Anna Zorkovská; Farit Urakaev; Peter Baláž; Jaroslav Briančin; Zdenka Bujňáková; Marcela Achimovičová; Eberhard Gock
Covellite, CuS and chalcocite, Cu2S were prepared within a few seconds by ball milling of the elemental precursors. The morphology of the used copper, related to its preparation method, was found to be the key factor for the ultrafast reaction. The explosive character of the reaction was monitored by the gas pressure changes in the milling vessel and the reaction progress was pursued by X-ray diffraction analysis and Soxhlets extraction. The local temperature at the contact site between the milling media and the milled mixture at the time of explosion was calculated as 950 °C for CuS and 700 °C for Cu2S. The mean crystallite size of the prepared products was 15 nm for CuS and 65 nm for Cu2S.
Journal of Colloid and Interface Science | 2017
Zdenka Bujňáková; Matej Baláž; Erika Dutková; Peter Baláž; Martin Kello; Gabriela Mojžišová; Ján Mojžiš; Mária Vilková; Ján Imrich; Miroslav Psotka
The wet mechanochemical procedure for the capping of the CdS and CdS/ZnS quantum dot nanocrystals is reported. l-cysteine and polyvinylpyrrolidone (PVP) were used as capping agents. When using l-cysteine, the dissolution of cadmium(II) was almost none for CdS/ZnS nanocrystals. Moreover, prepared CdS- and CdS/ZnS-cysteine nanosuspensions exhibited unimodal particle size distributions with very good stability, which was further supported by the zeta potential measurements. The Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy showed the successful embedment of cysteine into the structure of the nanocrystals. Additionally, the optical properties were examined, and the results showed that the cysteine nanosuspension has promising fluorescence properties. On the other hand, PVP was not determined to be a very suitable capping agent for the present system. In this case, the release of cadmium(II) was higher in comparison to the l-cysteine capped samples. The nanosuspensions were successfully used for in vitro studies on selected cancer cell lines. Using fluorescence microscopy, it was evidenced that the nanocrystals enter the cell and that they can serve as imaging agents in biomedical applications.
Chemosphere | 2016
Matej Baláž; Jana Ficeriová; Jaroslav Briančin
Eggshell waste was successfully used for the removal of heavy metal ions from model solutions. The effect of ball milling on the structure and adsorption ability of eggshell (ES) and its membrane (ESM) was investigated, with the conclusion that milling is benefitial only for the ES. The adsorption experiments showed that the ESM is a selective adsorbent, as the adsorption ability toward different ions decreased in the following order: Ag(I) > Cd(II) > Zn(II). The obtained Qm values for Ag(I) adsorption on the ESM and ES were 52.9 and 55.7 mg g(-1), respectively. The potential industrial application of ES was also demonstrated by successful removal of Ag(I) from the technological waste.
Materials Science and Engineering: C | 2017
Zdenka Bujňáková; Matej Baláž; M. Zdurienčíková; Sedlák J; Mária Čaplovičová; Ľ. Čaplovič; Erika Dutková; Anna Zorkovská; Erika Turianicová; Peter Baláž; O. Shpotyuk; S. Andrejko
Arsenic sulfide compounds have a long history of application in a traditional medicine. In recent years, realgar has been studied as a promising drug in cancer treatment. In this study, the arsenic sulfide (As4S4) nanoparticles combined with zinc sulfide (ZnS) ones in different molar ratio have been prepared by a simple mechanochemical route in a planetary mill. The successful synthesis and structural properties were confirmed and followed via X-ray diffraction and high-resolution transmission electron microscopy measurements. The morphology of the particles was studied via scanning electron microscopy and transmission electron microscopy methods and the presence of nanocrystallites was verified. For biological tests, the prepared As4S4/ZnS nanoparticles were further milled in a circulation mill in a water solution of Poloxamer 407 (0.5wt%), in order to cover the particles with this biocompatible copolymer and to obtain stable nanosuspensions with unimodal distribution. The average size of the particles in the nanosuspensions (~120nm) was determined by photon cross-correlation spectroscopy method. Stability of the nanosuspensions was determined via particle size distribution and zeta potential measurements, confirming no physico-chemical changes for several months. Interestingly, with the increasing amount of ZnS in the sample, the stability was improved. The anti-cancer effects were tested on two melanoma cell lines, A375 and Bowes, with promising results, confirming increased efficiency of the samples containing both As4S4 and ZnS nanocrystals.