Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matej Orešič is active.

Publication


Featured researches published by Matej Orešič.


BMC Bioinformatics | 2010

MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data

Tomáš Pluskal; Sandra Castillo; Alejandro Villar-Briones; Matej Orešič

BackgroundMass spectrometry (MS) coupled with online separation methods is commonly applied for differential and quantitative profiling of biological samples in metabolomic as well as proteomic research. Such approaches are used for systems biology, functional genomics, and biomarker discovery, among others. An ongoing challenge of these molecular profiling approaches, however, is the development of better data processing methods. Here we introduce a new generation of a popular open-source data processing toolbox, MZmine 2.ResultsA key concept of the MZmine 2 software design is the strict separation of core functionality and data processing modules, with emphasis on easy usability and support for high-resolution spectra processing. Data processing modules take advantage of embedded visualization tools, allowing for immediate previews of parameter settings. Newly introduced functionality includes the identification of peaks using online databases, MSn data support, improved isotope pattern support, scatter plot visualization, and a new method for peak list alignment based on the random sample consensus (RANSAC) algorithm. The performance of the RANSAC alignment was evaluated using synthetic datasets as well as actual experimental data, and the results were compared to those obtained using other alignment algorithms.ConclusionsMZmine 2 is freely available under a GNU GPL license and can be obtained from the project website at: http://mzmine.sourceforge.net/. The current version of MZmine 2 is suitable for processing large batches of data and has been applied to both targeted and non-targeted metabolomic analyses.


Cell Metabolism | 2013

Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist

Sama Islam Sayin; Annika Wahlström; Jenny Felin; Sirkku Jäntti; Hanns-Ulrich Marschall; Krister Bamberg; Bo Angelin; Tuulia Hyötyläinen; Matej Orešič; Fredrik Bäckhed

Bile acids are synthesized from cholesterol in the liver and further metabolized by the gut microbiota into secondary bile acids. Bile acid synthesis is under negative feedback control through activation of the nuclear receptor farnesoid X receptor (FXR) in the ileum and liver. Here we profiled the bile acid composition throughout the enterohepatic system in germ-free (GF) and conventionally raised (CONV-R) mice. We confirmed a dramatic reduction in muricholic acid, but not cholic acid, levels in CONV-R mice. Rederivation of Fxr-deficient mice as GF demonstrated that the gut microbiota regulated expression of fibroblast growth factor 15 in the ileum and cholesterol 7α-hydroxylase (CYP7A1) in the liver by FXR-dependent mechanisms. Importantly, we identified tauro-conjugated beta- and alpha-muricholic acids as FXR antagonists. These studies suggest that the gut microbiota not only regulates secondary bile acid metabolism but also inhibits bile acid synthesis in the liver by alleviating FXR inhibition in the ileum.


Bioinformatics | 2006

MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data

Mikko Katajamaa; Jarkko Miettinen; Matej Orešič

SUMMARY New additional methods are presented for processing and visualizing mass spectrometry based molecular profile data, implemented as part of the recently introduced MZmine software. They include new features and extensions such as support for mzXML data format, capability to perform batch processing for large number of files, support for parallel processing, new methods for calculating peak areas using post-alignment peak picking algorithm and implementation of Sammons mapping and curvilinear distance analysis for data visualization and exploratory analysis. AVAILABILITY MZmine is available under GNU Public license from http://mzmine.sourceforge.net/.


Nature Medicine | 2010

Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance

Miguel López; Luis M. Varela; María J. Vázquez; Sergio Rodriguez-Cuenca; Cr Gonzalez; Vidya Velagapudi; Donald A. Morgan; Erik Schoenmakers; Khristofor Agassandian; Ricardo Lage; Pablo B. Martínez de Morentin; Sulay Tovar; Ruben Nogueiras; David Carling; Christopher J. Lelliott; Rosalía Gallego; Matej Orešič; Krishna Chatterjee; Asish K. Saha; Kamal Rahmouni; Carlos Dieguez; Antonio Vidal-Puig

Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone–induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.


Cell Host & Microbe | 2015

The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes

Aleksandar D. Kostic; Dirk Gevers; Heli Siljander; Tommi Vatanen; Tuulia Hyötyläinen; Anu-Maaria Hämäläinen; Aleksandr Peet; Vallo Tillmann; Päivi Pöhö; Ismo Mattila; Harri Lähdesmäki; Eric A. Franzosa; Outi Vaarala; Marcus C. de Goffau; Hermie J. M. Harmsen; Jorma Ilonen; Suvi Virtanen; Clary B. Clish; Matej Orešič; Curtis Huttenhower; Mikael Knip; Ramnik J. Xavier

Colonization of the fetal and infant gut microbiome results in dynamic changes in diversity, which can impact disease susceptibility. To examine the relationship between human gut microbiome dynamics throughout infancy and type 1 diabetes (T1D), we examined a cohort of 33 infants genetically predisposed to T1D. Modeling trajectories of microbial abundances through infancy revealed a subset of microbial relationships shared across most subjects. Although strain composition of a given species was highly variable between individuals, it was stable within individuals throughout infancy. Metabolic composition and metabolic pathway abundance remained constant across time. A marked drop in alpha-diversity was observed in T1D progressors in the time window between seroconversion and T1D diagnosis, accompanied by spikes in inflammation-favoring organisms, gene functions, and serum and stool metabolites. This work identifies trends in the development of the human infant gut microbiome along with specific alterations that precede T1D onset and distinguish T1D progressors from nonprogressors.


PLOS Genetics | 2007

PPAR gamma 2 Prevents Lipotoxicity by Controlling Adipose Tissue Expandability and Peripheral Lipid Metabolism

Gema Medina-Gomez; Sarah L. Gray; Laxman Yetukuri; Kenju Shimomura; Sam Virtue; Mark Campbell; R. Keira Curtis; Mercedes Jimenez-Linan; Margaret Blount; Giles S. H. Yeo; Miguel López; Tuulikki Seppänen-Laakso; Frances M. Ashcroft; Matej Orešič; Antonio Vidal-Puig

Peroxisome proliferator activated receptor gamma 2 (PPARg2) is the nutritionally regulated isoform of PPARg. Ablation of PPARg2 in the ob/ob background, PPARg2−/− Lepob/Lepob (POKO mouse), resulted in decreased fat mass, severe insulin resistance, β-cell failure, and dyslipidaemia. Our results indicate that the PPARg2 isoform plays an important role, mediating adipose tissue expansion in response to positive energy balance. Lipidomic analyses suggest that PPARg2 plays an important antilipotoxic role when induced ectopically in liver and muscle by facilitating deposition of fat as relatively harmless triacylglycerol species and thus preventing accumulation of reactive lipid species. Our data also indicate that PPARg2 may be required for the β-cell hypertrophic adaptive response to insulin resistance. In summary, the PPARg2 isoform prevents lipotoxicity by (a) promoting adipose tissue expansion, (b) increasing the lipid-buffering capacity of peripheral organs, and (c) facilitating the adaptive proliferative response of β-cells to insulin resistance.


BMC Bioinformatics | 2005

Processing methods for differential analysis of LC/MS profile data.

Mikko Katajamaa; Matej Orešič

BackgroundLiquid chromatography coupled to mass spectrometry (LC/MS) has been widely used in proteomics and metabolomics research. In this context, the technology has been increasingly used for differential profiling, i.e. broad screening of biomolecular components across multiple samples in order to elucidate the observed phenotypes and discover biomarkers. One of the major challenges in this domain remains development of better solutions for processing of LC/MS data.ResultsWe present a software package MZmine that enables differential LC/MS analysis of metabolomics data. This software is a toolbox containing methods for all data processing stages preceding differential analysis: spectral filtering, peak detection, alignment and normalization. Specifically, we developed and implemented a new recursive peak search algorithm and a secondary peak picking method for improving already aligned results, as well as a normalization tool that uses multiple internal standards. Visualization tools enable comparative viewing of data across multiple samples. Peak lists can be exported into other data analysis programs. The toolbox has already been utilized in a wide range of applications. We demonstrate its utility on an example of metabolic profiling of Catharanthus roseus cell cultures.ConclusionThe software is freely available under the GNU General Public License and it can be obtained from the project web page at: http://mzmine.sourceforge.net/.


Journal of Experimental Medicine | 2008

Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes

Matej Orešič; Satu Simell; Marko Sysi-Aho; Kirsti Näntö-Salonen; Tuulikki Seppänen-Laakso; Vilhelmiina Parikka; Mikko Katajamaa; Anne Hekkala; Ismo Mattila; Päivi Keskinen; Laxman Yetukuri; Arja Reinikainen; Jyrki Lähde; Tapani Suortti; Jari Hakalax; Tuula Simell; Heikki Hyöty; Riitta Veijola; Jorma Ilonen; Riitta Lahesmaa; Mikael Knip; Olli Simell

The risk determinants of type 1 diabetes, initiators of autoimmune response, mechanisms regulating progress toward β cell failure, and factors determining time of presentation of clinical diabetes are poorly understood. We investigated changes in the serum metabolome prospectively in children who later progressed to type 1 diabetes. Serum metabolite profiles were compared between sample series drawn from 56 children who progressed to type 1 diabetes and 73 controls who remained nondiabetic and permanently autoantibody negative. Individuals who developed diabetes had reduced serum levels of succinic acid and phosphatidylcholine (PC) at birth, reduced levels of triglycerides and antioxidant ether phospholipids throughout the follow up, and increased levels of proinflammatory lysoPCs several months before seroconversion to autoantibody positivity. The lipid changes were not attributable to HLA-associated genetic risk. The appearance of insulin and glutamic acid decarboxylase autoantibodies was preceded by diminished ketoleucine and elevated glutamic acid. The metabolic profile was partially normalized after the seroconversion. Autoimmunity may thus be a relatively late response to the early metabolic disturbances. Recognition of these preautoimmune alterations may aid in studies of disease pathogenesis and may open a time window for novel type 1 diabetes prevention strategies.


PLOS ONE | 2007

Acquired Obesity Is Associated with Changes in the Serum Lipidomic Profile Independent of Genetic Effects – A Monozygotic Twin Study

Kirsi H. Pietiläinen; Marko Sysi-Aho; Aila Rissanen; Tuulikki Seppänen-Laakso; Hannele Yki-Järvinen; Jaakko Kaprio; Matej Orešič

Both genetic and environmental factors are involved in the etiology of obesity and the associated lipid disturbances. We determined whether acquired obesity is associated with changes in global serum lipid profiles independent of genetic factors in young adult monozygotic (MZ) twins. 14 healthy MZ pairs discordant for obesity (10 to 25 kg weight difference) and ten weight concordant control pairs aged 24–27 years were identified from a large population-based study. Insulin sensitivity was assessed by the euglycemic clamp technique, and body composition by DEXA (% body fat) and by MRI (subcutaneous and intra-abdominal fat). Global characterization of lipid molecular species in serum was performed by a lipidomics strategy using liquid chromatography coupled to mass spectrometry. Obesity, independent of genetic influences, was primarily related to increases in lysophosphatidylcholines, lipids found in proinflammatory and proatherogenic conditions and to decreases in ether phospholipids, which are known to have antioxidant properties. These lipid changes were associated with insulin resistance, a pathogonomic characteristic of acquired obesity in these young adult twins. Our results show that obesity, already in its early stages and independent of genetic influences, is associated with deleterious alterations in the lipid metabolism known to facilitate atherogenesis, inflammation and insulin resistance.


Genes & Development | 2009

Integration of microRNA miR-122 in hepatic circadian gene expression

David Gatfield; Gwendal Le Martelot; Charles E. Vejnar; Daniel Gerlach; Olivier Schaad; Fabienne Fleury-Olela; Anna-Liisa Ruskeepää; Matej Orešič; Christine Esau; Evgeny M. Zdobnov; Ueli Schibler

In liver, most metabolic pathways are under circadian control, and hundreds of protein-encoding genes are thus transcribed in a cyclic fashion. Here we show that rhythmic transcription extends to the locus specifying miR-122, a highly abundant, hepatocyte-specific microRNA. Genetic loss-of-function and gain-of-function experiments have identified the orphan nuclear receptor REV-ERBalpha as the major circadian regulator of mir-122 transcription. Although due to its long half-life mature miR-122 accumulates at nearly constant rates throughout the day, this miRNA is tightly associated with control mechanisms governing circadian gene expression. Thus, the knockdown of miR-122 expression via an antisense oligonucleotide (ASO) strategy resulted in the up- and down-regulation of hundreds of mRNAs, of which a disproportionately high fraction accumulates in a circadian fashion. miR-122 has previously been linked to the regulation of cholesterol and lipid metabolism. The transcripts associated with these pathways indeed show the strongest time point-specific changes upon miR-122 depletion. The identification of Pparbeta/delta and the peroxisome proliferator-activated receptor alpha (PPARalpha) coactivator Smarcd1/Baf60a as novel miR-122 targets suggests an involvement of the circadian metabolic regulators of the PPAR family in miR-122-mediated metabolic control.

Collaboration


Dive into the Matej Orešič's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tuulikki Seppänen-Laakso

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marko Sysi-Aho

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Laxman Yetukuri

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peddinti Gopalacharyulu

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Jaana Suvisaari

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge