Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matej Par is active.

Publication


Featured researches published by Matej Par.


Operative Dentistry | 2015

Raman Spectroscopic Assessment of Degree of Conversion of Bulk-Fill Resin Composites - Changes at 24 Hours Post Cure

Matej Par; Ozren Gamulin; Danijela Marović; Eva Klarić; Zrinka Tarle

OBJECTIVE The aim of this study was to determine degree of conversion (DC) of solid and flowable bulk-fill composites immediately and after 24 hours and investigate the variations of DC at surface and depths up to 4 mm. MATERIALS AND METHODS Eight bulk-fill composites (Tetric EvoCeram Bulk Fill [shades IVA and IVB], Quixfil, X-tra fil, Venus Bulk Fill, X-tra Base, SDR, Filtek Bulk Fill) were investigated, and two conventional composites (GrandioSO, X-Flow) were used as controls. The samples (n = 5) were cured for 20 seconds with irradiance of 1090 mW/cm(2). Raman spectroscopic measurements were made immediately after curing on sample surfaces and after 24 hours of dark storage at surface and at incremental depths up to 4 mm. Mean DC values were compared using repeated measures analysis of variance (ANOVA) and t-test for dependent samples. RESULTS Surface DC values immediately after curing ranged from 59.1%-71.8%, while the 24-hour postcure values ranged from 71.3%-86.1%. A significant increase of DC was observed 24 hours post cure for all bulk-fill composites, which amounted from 11.3% to 16.9%. Decrease of DC through depths up to 4 mm varied widely among bulk-fill composites and ranged from 2.9% to 19.7%. CONCLUSIONS All bulk-fill composites presented a considerable 24-hour postcure DC increase and clinically acceptable DC at depths up to 4 mm. Conventional control composites were sufficiently cured only up to 2 mm, despite significant postcure polymerization.


Operative Dentistry | 2015

Enamel and Dentin Microhardness and Chemical Composition After Experimental Light-activated Bleaching.

Eva Klarić; Mario Rakić; Ivan Sever; Ognjen Milat; Matej Par; Zrinka Tarle

OBJECTIVES To evaluate 1) the influence of five bleaching agents (with additional light activation) on enamel and dentin surface microhardness and chemical composition and 2) the remineralizing potential of artificial saliva and amorphous calcium phosphate (ACP). METHODS AND MATERIALS The study was conducted on 125 human third molars dissected into quarters for separate enamel and dentin measurements. The bleaching process was performed with 38% and 25% hydrogen peroxide (HP) and 30%, 16%, and 10% carbamide peroxide (CP) gels two times for 15 minutes each time. All bleaching gels were tested alone and in combination with ZOOM2, light-emitting diode (LED), organic LED, and femtosecond laser. A total of 25 bleaching combinations (n=10) were evaluated. Microhardness was measured by a Vickers diamond. Chemical analysis was performed using energy-dispersive X-ray spectroscopy. RESULTS Bleaching agents used in the absence of light activation caused a significant reduction in enamel and dentin surface microhardness (p<0.001), ranging from 8% for 16% CP to 40% for 25% HP. The effects of different light activations were negligible. After two-week treatment with ACP and artificial saliva, maximum deviation from baseline microhardness was just 3%. Such treatment increased the concentrations of calcium, phosphorus, and fluorine. CONCLUSIONS An increase in peroxide concentration and gel acidity negatively affected microhardness and concentrations of calcium and phosphorus in enamel and dentin. ACP and artificial saliva stimulated the remineralization of hard tissues.


Journal of Dentistry | 2016

Conversion and temperature rise of remineralizing composites reinforced with inert fillers.

Matej Par; Ozren Gamulin; Danijela Marović; Hrvoje Skenderović; Eva Klarić; Zrinka Tarle

OBJECTIVES Remineralizing experimental composites based on amorphous calcium phosphate (ACP) were investigated. The impact of curing time (20 and 40s), curing depth (1, 2, 3 and 4mm) and addition of inert fillers (barium glass and silica) on the conversion and temperature rise during curing were examined. METHODS Five ACP-composites and two control composites were prepared based on the light-curable EBPADMA-TEGDMA-HEMA resin. For temperature measurements, a commercial composite was used as an additional control. Conversion was assessed using FT-Raman spectroscopy by comparing the relative change of the band at 1640 cm(-1) before and after polymerization. The temperature rise during curing was recorded in real-time using a T-type thermocouple. RESULTS At 1mm depth, the ACP-composites attained significantly higher conversion (77.8-87.3%) than the control composites based on the same resin (60.5-66.3%). The addition of inert fillers resulted in approximately 5% lower conversion at clinically relevant depths (up to 2mm) for the curing time of 40s. Conversion decline through depths depended on the added inert fillers. Conversion values higher than 80% of the maximum conversion were observed for all of the ACP-composites at depths up to 3mm, when cured for 40s. Significantly higher total temperature rise for the ACP-composites (11.5-13.1 °C) was measured compared to the control composites (8.6-10.8 °C) and the commercial control (8.7 °C). CONCLUSIONS The admixture of inert fillers represents a promising strategy for further development of ACP-composites, as it reduced the temperature rise while negligibly impairing the conversion. CLINICAL SIGNIFICANCE High conversions of ACP-composites are favorable in terms of mechanical properties and biocompatibility. However, high conversions were accompanied with high temperature rise, which might present a pulpal hazard.


Dental Materials | 2016

Impedance changes during setting of amorphous calcium phosphate composites.

Matej Par; Ana Šantić; Ozren Gamulin; Danijela Marović; Andrea Moguš-Milanković; Zrinka Tarle

OBJECTIVES To investigate the electrical properties of experimental light-curable composite materials based on amorphous calcium phosphate (ACP) with the admixture of silanized barium glass and silica fillers. METHODS Short-term setting was investigated by impedance measurements at a frequency of 1kHz, while for the long-term setting the impedance spectra were measured consecutively over a frequency range of 0.05Hz to 1MHz for 24h. The analysis of electrical resistivity changes during curing allowed the extraction of relevant kinetic parameters. The impedance results were correlated to the degree of conversion assessed by Raman spectroscopy, water content determined by gravimetry, light transmittance measured by CCD spectrometer and microstructural features observed by scanning electron microscopy. RESULTS ACP-based composites have shown higher immediate degree of conversion and less post-cure polymerization than the control composites, but lower polymerization rate. The polymerization rate assessed by impedance measurements correlated well with the light transmittance. The differences in the electrical conductivity values observed among the materials were correlated to the amount of water introduced into composites by the ACP filler. High correlation was found between the degree of conversion and electrical resistivity. Equivalent circuit modeling revealed two electrical contributions for the ACP-based composites and a single contribution for the control composites. SIGNIFICANCE The impedance spectroscopy has proven a valuable method for gaining insight into various features of ACP-based composites. Better understanding of the properties of ACP-based composites should further the development of these promising bioactive materials.


Acta stomatologica Croatica | 2016

Long Term Degree of Conversion of two Bulk-Fill Composites

Matej Par; Matea Lapas-Barisic; Ozren Gamulin; Vlatko Pandurić; Nika Spanovic; Zrinka Tarle

OBJECTIVES To investigate the long-term development of the post-cure degree of conversion (DC) for two flowable bulk-fill composites. MATERIALS AND METHODS Tetric EvoFlow Bulk Fill (TEFBF) and SDR were chosen due to their distinct compositional modifications that enable the decrease of translucency during polymerization and lower polymerization rate, respectively. DC was assessed using FT-Raman spectroscopy at the post-cure times of 0 h, 24 h, 7 d and 30 d. The post-cure behavior was analyzed by a mixed model ANOVA and partial eta-squared statistics. RESULTS DC ranged from 61.3-81.1% for TEFBF and 58.9-81.6% for SDR. The initial (0 h) DC was significantly lower at a depth of 4 mm than at a depth of 1 mm (4.9% for SDR and 11.1% for TEFBF). Both materials presented a significant post-cure DC increase, up to 16.4% for TEFBF and 20.6% for SDR. The post-cure DC development was depth-dependent for TEFBF, but not for SDR. The post-cure DC increase was observed during 24 h for TEFBF and 7 d for SDR. CONCLUSIONS Some of the bulk-fill composites may need longer times than the commonly accepted 24 h to reach the final conversion. This may be attributed to their compositional modifications that are mostly undisclosed by manufacturers. Our findings imply that investigations commonly performed 24 h post-cure may underestimate some of the bulk-fill composite properties, if these are affected by the slowly-developing DC. Reactive species may also be available for leaching out of the restoration during an extended time period, with possible implications on biocompatibility.


Operative Dentistry | 2018

Real-time light transmittance monitoring for determining polymerization completeness of conventional and bulk-fill dental composites

Matej Par; I Repusic; Hrvoje Skenderović; E Klaric Sever; Danijela Marović; Zrinka Tarle

OBJECTIVES To monitor the real-time changes in light transmittance during composite curing and to use transmittance data to determine the curing times required for a complete polymerization. METHODS Three conventional and three bulk fill composites were cured with two light-emitting diode curing units at layer thicknesses of 2 mm and 4 mm. The real-time light transmittance data were collected by a UV-Vis spectrometer in the wavelength range of 350-550 nm, plotted against time (t) and fitted to an exponential function f(t), whose first derivative ΔT(t) = df(t)/dt represented the rate of transmittance change. As the changing transmittance reflects structural changes that occur during polymerization, ΔT(t) > 0 was considered to indicate an ongoing polymerization, whereas ΔT(t) values approaching zero suggested a complete polymerization. This principle was used to determine times required for a complete polymerization (tcomplete) for each material/thickness/curing unit combination. RESULTS Light transmittance was significantly influenced by the material type, sample thickness, and curing unit, amounting to 2.9%-27.0% for the bulk fill and 0.7%-16.7% for the conventional composites. The values of tcomplete amounted to 15.3-23.3 seconds for the bulk fill composites at 2 mm, 20.2-33.3 seconds for the conventional composites at 2 mm, 26.9-42.1 seconds for the bulk fill composites at 4 mm, and 40.1-59.8 seconds for the conventional composites at 4 mm. Additionally, an exponential relationship was discovered between the light transmittance and tcomplete. CONCLUSIONS Some of the tcomplete values considerably exceeded the curing times recommended by the manufacturers.


Journal of Dentistry | 2018

Curing potential of experimental resin composites with systematically varying amount of bioactive glass: Degree of conversion, light transmittance and depth of cure

Matej Par; Nika Spanovic; Ruza Bjelovucic; Hrvoje Skenderović; Ozren Gamulin; Zrinka Tarle

OBJECTIVES The aim of this work was to investigate the curing potential of an experimental resin composite series with the systematically varying amount of bioactive glass 45S5 by evaluating the degree of conversion, light transmittance and depth of cure. METHODS Resin composites based on a Bis-GMA/TEGDMA resin with a total filler load of 70 wt% and a variable amount of bioactive glass (0-40 wt%) were prepared. The photoinitiator system was camphorquinone and ethyl-4-(dimethylamino) benzoate. The degree of conversion and light transmittance were measured by Raman spectroscopy and UV-vis spectroscopy, respectively. The depth of cure was evaluated according to the classical ISO 4049 test. RESULTS The initial introduction of bioactive glass into the experimental series diminished the light transmittance while the further increase in the bioactive glass amount up to 40 wt% caused minor variations with no clear trend. The curing potential of the experimental composites was similar to or better than that of commercial resin composites. However, unsilanized bioactive glass fillers demonstrated the tendency to diminish both the maximum attainable conversion and the curing efficiency at depth. CONCLUSIONS Experimental composite materials containing bioactive glass showed a clinically acceptable degree of conversion and depth of cure. The degree of conversion and depth of cure were diminished by bioactive glass fillers in a dose-dependent manner, although light transmittance was similar among all of the experimental composites containing 5-40 wt% of bioactive glass. CLINICAL SIGNIFICANCE Reduced curing potential caused by the bioactive glass has possible consequences on mechanical properties and biocompatibility.


Dental Composite Materials for Direct Restorations | 2018

Degree of Conversion

Zrinka Tarle; Matej Par

The degree of conversion (DC) can be defined as the extent to which monomers react to form polymers or as the ratio of C=C double bonds that are converted into C-C single bonds. In the polymerization of bifunctional methacrylates, the complete conversion is never attainable because diffusional restrictions in later stages of the polymerization reaction prevent a certain amount of monomer molecules from reaching reaction sites. Thus the DC in dental composites usually varies between 50 and 80%. The DC is a fundamental attribute of a cured composite since it affects virtually all other material properties which are important for the clinical success of the restoration. Although the composition of contemporary composites is fine-tuned to attain optimal DC and the related properties if properly handled and light-cured, poor DC due to unfavorable curing conditions or operators’ insufficient understanding of the curing procedure may affect critical material properties and increase the risk of clinical failure. This chapter reviews various factors determining the DC, properties of composite materials which are dependent on the DC, as well as methods used to evaluate the DC.


Journal of Dentistry | 2018

Polymerization kinetics of experimental bioactive composites containing bioactive glass

Matej Par; Zrinka Tarle; Reinhard Hickel; Nicoleta Ilie

OBJECTIVES To investigate the polymerization kinetics and the degree of conversion (DC) of experimental resin composites with varying amount of bioactive glass 45S5 (BG). METHODS Experimental resin composites based on a photo-curable Bis-GMA/TEGDMA resin system were prepared. The composite series contained 0, 5, 10, 20, and 40 wt% of BG and reinforcing fillers up to the total filler amount of 70 wt%. Composite specimens were light cured with 1219 mW/cm2 for 20 or 40 s and their DC was monitored during 5 min at the data collection rate of 2 s-1 using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). RESULTS The 5-min DC values for experimental composites were in the range of 42.4-55.9% and 47.3-57.9% for curing times of 20 and 40 s, respectively. The differences in the 5-min DC between curing times of 20 s or 40 s became more pronounced in materials with higher BG amount. Within both curing times, a decreasing trend of the 5-min DC values was observed with the increasing percentage of BG fillers. The maximum polymerization rate also decreased consistently with the increasing BG amount. CONCLUSIONS Unsilanized BG fillers showed a dose-dependent inhibitory effect on polymerization rate and the DC. Extending the curing time from 20 to 40 s showed a limited potential to improve the DC of composites with higher BG amount. SIGNIFICANCE The observed inhibitory effect of BG fillers on the polymerization of resin composites may have a negative influence on mechanical properties and biocompatibility.


European Journal of Oral Sciences | 2018

Real-time curing characteristics of experimental resin composites containing amorphous calcium phosphate

Matej Par; Zrinka Tarle; Reinhard Hickel; Nicoleta Ilie

The real-time polymerization of light-curable experimental resin composites filled with amorphous calcium phosphate (ACP) was monitored. Experimental composites were based on a 2,2-bis[4-(2-ethoxy-3-methacryloyloxy propoxy)phenyl]propane (Bis-EMA)/triethyleneglycol dimethacrylate (TEGDMA)/2-hydroxyethyl methacrylate (HEMA) resin photoactivated by a camphorquinone/tertiary amine system. Four ACP composites were prepared, containing 40 wt% ACP and 0/10 wt% reinforcing fillers (barium glass and silica). Additionally, two control composites were prepared which contained only reinforcing fillers (40-50 wt%). The degree of conversion (DC) was monitored in real time using a Fourier-transform infrared (FTIR) spectrometer with an attenuated total reflectance accessory. During the light curing (1,219 mW cm-2 ) for either 20 or 40 s, infrared spectra were collected from the bottom of 2-mm-thick composite specimens at the rate of two spectra per second over 5 min. When cured for 40 s, the ACP composites attained a high DC (89.1%-92.4%), while the DC of control composites was significantly lower (53.5%-68.4%). All materials showed a lower DC for the shorter curing time (20 s) and various extents of 5-min postcure polymerization: 12.9%-21.5% for the ACP composites and 2.7%-5.2% for the control composites. The control composites reached the maximum reaction rate much earlier (4.1-4.3 s) and at lower DC (9.9%-10.4%) than did the ACP composites (17.4-22.0 s and 43.5%-49.3%, respectively).

Collaboration


Dive into the Matej Par's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Moguš-Milanković

Missouri University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge