Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mateja Hajdinjak is active.

Publication


Featured researches published by Mateja Hajdinjak.


Nature | 2015

An early modern human from Romania with a recent Neanderthal ancestor

Qiaomei Fu; Mateja Hajdinjak; Oana Teodora Moldovan; Silviu Constantin; Swapan Mallick; Pontus Skoglund; Nick Patterson; Nadin Rohland; Iosif Lazaridis; Birgit Nickel; Bence Viola; Kay Prüfer; Matthias Meyer; Janet Kelso; David Reich; Svante Pääbo

Neanderthals are thought to have disappeared in Europe approximately 39,000–41,000 years ago but they have contributed 1–3% of the DNA of present-day people in Eurasia. Here we analyse DNA from a 37,000–42,000-year-old modern human from Peştera cu Oase, Romania. Although the specimen contains small amounts of human DNA, we use an enrichment strategy to isolate sites that are informative about its relationship to Neanderthals and present-day humans. We find that on the order of 6–9% of the genome of the Oase individual is derived from Neanderthals, more than any other modern human sequenced to date. Three chromosomal segments of Neanderthal ancestry are over 50 centimorgans in size, indicating that this individual had a Neanderthal ancestor as recently as four to six generations back. However, the Oase individual does not share more alleles with later Europeans than with East Asians, suggesting that the Oase population did not contribute substantially to later humans in Europe.


Nature | 2016

The genetic history of Ice Age Europe

Qiaomei Fu; Cosimo Posth; Mateja Hajdinjak; Martin Petr; Swapan Mallick; Daniel Fernandes; Anja Furtwängler; Wolfgang Haak; Matthias Meyer; Alissa Mittnik; Birgit Nickel; Alexander Peltzer; Nadin Rohland; Viviane Slon; Sahra Talamo; Iosif Lazaridis; Mark Lipson; Iain Mathieson; Stephan Schiffels; Pontus Skoglund; A.P. Derevianko; Nikolai Drozdov; Vyacheslav Slavinsky; Alexander Tsybankov; Renata Grifoni Cremonesi; Francesco Mallegni; Bernard Gély; Eligio Vacca; Manuel Ramón González Morales; Lawrence Guy Straus

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. We analyze genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas the earliest modern humans in Europe did not contribute substantially to present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. A ~35,000 year old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe during the Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a new genetic component related to present-day Near Easterners appears in Europe. These results document how population turnover and migration have been recurring themes of European pre-history.


BioTechniques | 2015

Reducing microbial and human contamination in DNA extractions from ancient bones and teeth

Petra Korlević; Tobias Gerber; Marie-Theres Gansauge; Mateja Hajdinjak; Sarah Nagel; Ayinuer Aximu-Petri; Matthias Meyer

Although great progress has been made in improving methods for generating DNA sequences from ancient biological samples, many, if not most, samples are still not amenable for analyses due to overwhelming contamination with microbial or modern human DNA. Here we explore different DNA decontamination procedures for ancient bones and teeth for use prior to DNA library preparation and high-throughput sequencing. Two procedures showed promising results: (i) the release of surface-bound DNA by phosphate buffer and (ii) the removal of DNA contamination by sodium hypochlorite treatment. Exposure to phosphate removes on average 64% of the microbial DNA from bone powder but only 37% of the endogenous DNA (from the organism under study), increasing the percentage of informative sequences by a factor of two on average. An average 4.6-fold increase, in one case reaching 24-fold, is achieved by sodium hypochlorite treatment, albeit at the expense of destroying 63% of the endogenous DNA preserved in the bone. While both pretreatment methods described here greatly reduce the cost of genome sequencing from ancient material due to efficient depletion of microbial DNA, we find that the removal of human DNA contamination remains a challenging problem.


Science | 2017

A high-coverage Neandertal genome from Vindija Cave in Croatia

Kay Prüfer; Cesare de Filippo; Steffi Grote; Fabrizio Mafessoni; Petra Korlević; Mateja Hajdinjak; Benjamin Vernot; Laurits Skov; Pinghsun Hsieh; Stéphane Peyrégne; David Reher; Charlotte Hopfe; Sarah Nagel; Tomislav Maricic; Qiaomei Fu; Christoph Theunert; Rebekah L. Rogers; Pontus Skoglund; Manjusha Chintalapati; Michael Dannemann; Bradley J. Nelson; Felix M. Key; Pavao Rudan; Željko Kućan; Ivan Gušić; Liubov V. Golovanova; Vladimir B. Doronichev; Nick Patterson; David Reich; Evan E. Eichler

Revelations from a Vindija Neandertal genome Neandertals clearly interbred with the ancestors of non-African modern humans, but many questions remain about our closest ancient relatives. Prüfer et al. present a 30-fold-coverage genome sequence from 50,000- to 65,000-year-old samples from a Neandertal woman found in Vindija, Croatia, and compared this sequence with genomes obtained from the Altai Neandertal, the Denisovans, and ancient and modern humans (see the Perspective by Bergström and Tyler-Smith). Neandertals likely lived in small groups and had lower genetic diversity than modern humans. The findings increase the number of Neandertal variants identified within populations of modern humans, and they suggest that a larger number of phenotypic and diseaserelated variants with Neandertal ancestry remain in the modern Eurasian gene pool than previously thought. Science, this issue p. 655; see also p. 586 A second deep-sequenced Neandertal genome reveals more about Neandertals and their relationships with ancient humans. To date, the only Neandertal genome that has been sequenced to high quality is from an individual found in Southern Siberia. We sequenced the genome of a female Neandertal from ~50,000 years ago from Vindija Cave, Croatia, to ~30-fold genomic coverage. She carried 1.6 differences per 10,000 base pairs between the two copies of her genome, fewer than present-day humans, suggesting that Neandertal populations were of small size. Our analyses indicate that she was more closely related to the Neandertals that mixed with the ancestors of present-day humans living outside of sub-Saharan Africa than the previously sequenced Neandertal from Siberia, allowing 10 to 20% more Neandertal DNA to be identified in present-day humans, including variants involved in low-density lipoprotein cholesterol concentrations, schizophrenia, and other diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne

Frido Welker; Mateja Hajdinjak; Sahra Talamo; Klervia Jaouen; Michael Dannemann; Francine David; Michèle Julien; Matthias Meyer; Janet Kelso; Ian Barnes; Selina Brace; Pepijn Kamminga; R. Fischer; Benedikt M. Kessler; John R. Stewart; Svante Pääbo; Matthew J. Collins; Jean-Jacques Hublin

Significance The displacement of Neandertals by anatomically modern humans (AMHs) 50,000–40,000 y ago in Europe has considerable biological and behavioral implications. The Châtelperronian at the Grotte du Renne (France) takes a central role in models explaining the transition, but the association of hominin fossils at this site with the Châtelperronian is debated. Here we identify additional hominin specimens at the site through proteomic zooarchaeology by mass spectrometry screening and obtain molecular (ancient DNA, ancient proteins) and chronometric data to demonstrate that these represent Neandertals that date to the Châtelperronian. The identification of an amino acid sequence specific to a clade within the genus Homo demonstrates the potential of palaeoproteomic analysis in the study of hominin taxonomy in the Late Pleistocene and warrants further exploration. In Western Europe, the Middle to Upper Paleolithic transition is associated with the disappearance of Neandertals and the spread of anatomically modern humans (AMHs). Current chronological, behavioral, and biological models of this transitional period hinge on the Châtelperronian technocomplex. At the site of the Grotte du Renne, Arcy-sur-Cure, morphological Neandertal specimens are not directly dated but are contextually associated with the Châtelperronian, which contains bone points and beads. The association between Neandertals and this “transitional” assemblage has been controversial because of the lack either of a direct hominin radiocarbon date or of molecular confirmation of the Neandertal affiliation. Here we provide further evidence for a Neandertal–Châtelperronian association at the Grotte du Renne through biomolecular and chronological analysis. We identified 28 additional hominin specimens through zooarchaeology by mass spectrometry (ZooMS) screening of morphologically uninformative bone specimens from Châtelperronian layers at the Grotte du Renne. Next, we obtain an ancient hominin bone proteome through liquid chromatography-MS/MS analysis and error-tolerant amino acid sequence analysis. Analysis of this palaeoproteome allows us to provide phylogenetic and physiological information on these ancient hominin specimens. We distinguish Late Pleistocene clades within the genus Homo based on ancient protein evidence through the identification of an archaic-derived amino acid sequence for the collagen type X, alpha-1 (COL10α1) protein. We support this by obtaining ancient mtDNA sequences, which indicate a Neandertal ancestry for these specimens. Direct accelerator mass spectometry radiocarbon dating and Bayesian modeling confirm that the hominin specimens date to the Châtelperronian at the Grotte du Renne.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Direct dating of Neanderthal remains from the site of Vindija Cave and implications for the Middle to Upper Paleolithic transition

Thibaut Devièse; Ivor Karavanić; Daniel Comeskey; Cara Kubiak; Petra Korlević; Mateja Hajdinjak; Siniša Radović; Noemi Procopio; Michael Buckley; Svante Pääbo; Thomas Higham

Significance Radiocarbon dating of Neanderthal remains recovered from Vindija Cave (Croatia) initially revealed surprisingly recent results: 28,000–29,000 B.P. This implied the remains could represent a late-surviving, refugial Neanderthal population and suggested they could have been responsible for producing some of the early Upper Paleolithic artefacts more usually produced by anatomically modern humans. This article presents revised radiocarbon dates of the human bones from this site obtained using a more robust purification method targeting the amino acid hydroxyproline. The data show that all the Neanderthal remains are from a much earlier period (>40,000 cal B.P.). These revised dates change our interpretation of this important site and demonstrate that the Vindija Neanderthals probably did not overlap temporally with early modern humans. Previous dating of the Vi-207 and Vi-208 Neanderthal remains from Vindija Cave (Croatia) led to the suggestion that Neanderthals survived there as recently as 28,000–29,000 B.P. Subsequent dating yielded older dates, interpreted as ages of at least ∼32,500 B.P. We have redated these same specimens using an approach based on the extraction of the amino acid hydroxyproline, using preparative high-performance liquid chromatography (Prep-HPLC). This method is more efficient in eliminating modern contamination in the bone collagen. The revised dates are older than 40,000 B.P., suggesting the Vindija Neanderthals did not live more recently than others across Europe, and probably predate the arrival of anatomically modern humans in Eastern Europe. We applied zooarchaeology by mass spectrometry (ZooMS) to find additional hominin remains. We identified one bone that is Neanderthal, based on its mitochondrial DNA, and dated it directly to 46,200 ± 1,500 B.P. We also attempted to date six early Upper Paleolithic bone points from stratigraphic units G1, Fd/d+G1 and Fd/d, Fd. One bone artifact gave a date of 29,500 ± 400 B.P., while the remainder yielded no collagen. We additionally dated animal bone samples from units G1 and G1–G3. These dates suggest a co-occurrence of early Upper Paleolithic osseous artifacts, particularly split-based points, alongside the remains of Neanderthals is a result of postdepositional mixing, rather than an association between the two groups, although more work is required to show this definitively.


Nature | 2018

Reconstructing the genetic history of late Neanderthals.

Mateja Hajdinjak; Qiaomei Fu; Alexander Hübner; Martin Petr; Fabrizio Mafessoni; Steffi Grote; Pontus Skoglund; Vagheesh Narasimham; Hélène Rougier; Isabelle Crevecoeur; Patrick Semal; Marie Soressi; Sahra Talamo; Jean-Jacques Hublin; Ivan Gušić; Željko Kućan; Pavao Rudan; Liubov V. Golovanova; Vladimir B. Doronichev; Cosimo Posth; Johannes Krause; Petra Korlević; Sarah Nagel; Birgit Nickel; Montgomery Slatkin; Nick Patterson; David Reich; Kay Prüfer; Matthias Meyer; Svante Pääbo

Although it has previously been shown that Neanderthals contributed DNA to modern humans, not much is known about the genetic diversity of Neanderthals or the relationship between late Neanderthal populations at the time at which their last interactions with early modern humans occurred and before they eventually disappeared. Our ability to retrieve DNA from a larger number of Neanderthal individuals has been limited by poor preservation of endogenous DNA and contamination of Neanderthal skeletal remains by large amounts of microbial and present-day human DNA. Here we use hypochlorite treatment of as little as 9 mg of bone or tooth powder to generate between 1- and 2.7-fold genomic coverage of five Neanderthals who lived around 39,000 to 47,000 years ago (that is, late Neanderthals), thereby doubling the number of Neanderthals for which genome sequences are available. Genetic similarity among late Neanderthals is well predicted by their geographical location, and comparison to the genome of an older Neanderthal from the Caucasus indicates that a population turnover is likely to have occurred, either in the Caucasus or throughout Europe, towards the end of Neanderthal history. We find that the bulk of Neanderthal gene flow into early modern humans originated from one or more source populations that diverged from the Neanderthals that were studied here at least 70,000 years ago, but after they split from a previously sequenced Neanderthal from Siberia around 150,000 years ago. Although four of the Neanderthals studied here post-date the putative arrival of early modern humans into Europe, we do not detect any recent gene flow from early modern humans in their ancestry.


Nature | 2018

The genome of the offspring of a Neanderthal mother and a Denisovan father

Viviane Slon; Fabrizio Mafessoni; Benjamin Vernot; Cesare de Filippo; Steffi Grote; Bence Viola; Mateja Hajdinjak; Stéphane Peyrégne; Sarah Nagel; Samantha Brown; Katerina Douka; Thomas Higham; Maxim B. Kozlikin; Michael V. Shunkov; A.P. Derevianko; Janet Kelso; Matthias Meyer; Kay Prüfer; Svante Pääbo

Neanderthals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of ‘Denisova 11’, a bone fragment from Denisova Cave (Russia)3 and show that it comes from an individual who had a Neanderthal mother and a Denisovan father. The father, whose genome bears traces of Neanderthal ancestry, came from a population related to a later Denisovan found in the cave4–6. The mother came from a population more closely related to Neanderthals who lived later in Europe2,7 than to an earlier Neanderthal found in Denisova Cave8, suggesting that migrations of Neanderthals between eastern and western Eurasia occurred sometime after 120,000 years ago. The finding of a first-generation Neanderthal–Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.Genomic evidence of the offspring of a Neanderthal mother and a Denisovan father suggests that mixing among different hominin groups may have more been frequent than previously appreciated.


Scientific Reports | 2016

Direct radiocarbon dating and genetic analyses on the purported Neanderthal mandible from the Monti Lessini (Italy)

Sahra Talamo; Mateja Hajdinjak; Marcello A. Mannino; Leone Fasani; Frido Welker; Fabio Martini; Francesca Romagnoli; Roberto Zorzin; Matthias Meyer; Jean-Jacques Hublin

Anatomically modern humans replaced Neanderthals in Europe around 40,000 years ago. The demise of the Neanderthals and the nature of the possible relationship with anatomically modern humans has captured our imagination and stimulated research for more than a century now. Recent chronological studies suggest a possible overlap between Neanderthals and anatomically modern humans of more than 5,000 years. Analyses of ancient genome sequences from both groups have shown that they interbred multiple times, including in Europe. A potential place of interbreeding is the notable Palaeolithic site of Riparo Mezzena in Northern Italy. In order to improve our understanding of prehistoric occupation at Mezzena, we analysed the human mandible and several cranial fragments from the site using radiocarbon dating, ancient DNA, ZooMS and isotope analyses. We also performed a more detailed investigation of the lithic assemblage of layer I. Surprisingly we found that the Riparo Mezzena mandible is not from a Neanderthal but belonged to an anatomically modern human. Furthermore, we found no evidence for the presence of Neanderthal remains among 11 of the 13 cranial and post-cranial fragments re-investigated in this study.


bioRxiv | 2018

The Genomic Formation of South and Central Asia

Vagheesh Narasimhan; Nick Patterson; Priya Moorjani; Iosif Lazaridis; Lipson Mark; Swapan Mallick; Nadin Rohland; Rebecca Bernardos; Alexander M. Kim; Nathan Nakatsuka; Iñigo Olalde; Alfredo Coppa; James Mallory; Vyacheslav Moiseyev; Janet Monge; Luca M Olivieri; Nicole Adamski; Nasreen Broomandkhoshbacht; Francesca Candilio; Olivia Cheronet; Brendan J. Culleton; Matthew Ferry; Daniel Fernandes; Beatriz Gamarra; Daniel Gaudio; Mateja Hajdinjak; Eadaoin Harney; Thomas K. Harper; Denise Keating; Ann-Marie Lawson

The genetic formation of Central and South Asian populations has been unclear because of an absence of ancient DNA. To address this gap, we generated genome-wide data from 362 ancient individuals, including the first from eastern Iran, Turan (Uzbekistan, Turkmenistan, and Tajikistan), Bronze Age Kazakhstan, and South Asia. Our data reveal a complex set of genetic sources that ultimately combined to form the ancestry of South Asians today. We document a southward spread of genetic ancestry from the Eurasian Steppe, correlating with the archaeologically known expansion of pastoralist sites from the Steppe to Turan in the Middle Bronze Age (2300-1500 BCE). These Steppe communities mixed genetically with peoples of the Bactria Margiana Archaeological Complex (BMAC) whom they encountered in Turan (primarily descendants of earlier agriculturalists of Iran), but there is no evidence that the main BMAC population contributed genetically to later South Asians. Instead, Steppe communities integrated farther south throughout the 2nd millennium BCE, and we show that they mixed with a more southern population that we document at multiple sites as outlier individuals exhibiting a distinctive mixture of ancestry related to Iranian agriculturalists and South Asian hunter-gathers. We call this group Indus Periphery because they were found at sites in cultural contact with the Indus Valley Civilization (IVC) and along its northern fringe, and also because they were genetically similar to post-IVC groups in the Swat Valley of Pakistan. By co-analyzing ancient DNA and genomic data from diverse present-day South Asians, we show that Indus Periphery-related people are the single most important source of ancestry in South Asia—consistent with the idea that the Indus Periphery individuals are providing us with the first direct look at the ancestry of peoples of the IVC—and we develop a model for the formation of present-day South Asians in terms of the temporally and geographically proximate sources of Indus Periphery-related, Steppe, and local South Asian hunter-gatherer-related ancestry. Our results show how ancestry from the Steppe genetically linked Europe and South Asia in the Bronze Age, and identifies the populations that almost certainly were responsible for spreading Indo-European languages across much of Eurasia. One Sentence Summary Genome wide ancient DNA from 357 individuals from Central and South Asia sheds new light on the spread of Indo-European languages and parallels between the genetic history of two sub-continents, Europe and South Asia.

Collaboration


Dive into the Mateja Hajdinjak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiaomei Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge