Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matheus Correa-Costa is active.

Publication


Featured researches published by Matheus Correa-Costa.


Journal of The American Society of Nephrology | 2015

Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion

Vinicius Andrade-Oliveira; Mariane T. Amano; Matheus Correa-Costa; Angela Castoldi; Raphael José Ferreira Felizardo; Danilo Candido de Almeida; Ênio José Bassi; Pedro M. Moraes-Vieira; Meire Ioshie Hiyane; Andrea C.D. Rodas; Jean Pierre Schatzmann Peron; Cristhiane F. Aguiar; Marlene Antônia dos Reis; Willian R. Ribeiro; Claudete J. Valduga; Rui Curi; Marco Aurélio Ramirez Vinolo; Caroline Marcantonio Ferreira; Niels Olsen Saraiva Câmara

Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.


PLOS ONE | 2012

TLR2, TLR4 and the MYD88 Signaling Pathway Are Crucial for Neutrophil Migration in Acute Kidney Injury Induced by Sepsis

Angela Castoldi; Tarcio Teodoro Braga; Matheus Correa-Costa; Cristhiane Fávero Aguiar; Ênio José Bassi; Reinaldo Correa-Silva; Rosa Maria Elias; Fábia Andréia Salvador; Pedro M. Moraes-Vieira; Marcos Antonio Cenedeze; Marlene Antônia dos Reis; Meire Ioshie Hiyane; Alvaro Pacheco-Silva; Giselle Martins Gonçalves; Niels Olsen Saraiva Câmara

The aim of this study was to investigate the role of TLR2, TLR4 and MyD88 in sepsis-induced AKI. C57BL/6 TLR2−/−, TLR4−/− and MyD88−/− male mice were subjected to sepsis by cecal ligation and puncture (CLP). Twenty four hours later, kidney tissue and blood samples were collected for analysis. The TLR2−/−, TLR4−/− and MyD88−/− mice that were subjected to CLP had preserved renal morphology, and fewer areas of hypoxia and apoptosis compared with the wild-type C57BL/6 mice (WT). MyD88−/− mice were completely protected compared with the WT mice. We also observed reduced expression of proinflammatory cytokines in the kidneys of the knockout mice compared with those of the WT mice and subsequent inhibition of increased vascular permeability in the kidneys of the knockout mice. The WT mice had increased GR1+low cells migration compared with the knockout mice and decreased in GR1+high cells migration into the peritoneal cavity. The TLR2−/−, TLR4−/−, and MyD88−/− mice had lower neutrophil infiltration in the kidneys. Depletion of neutrophils in the WT mice led to protection of renal function and less inflammation in the kidneys of these mice. Innate immunity participates in polymicrobial sepsis-induced AKI, mainly through the MyD88 pathway, by leading to an increased migration of neutrophils to the kidney, increased production of proinflammatory cytokines, vascular permeability, hypoxia and apoptosis of tubular cells.


Molecular Medicine | 2012

MyD88 signaling pathway is involved in renal fibrosis by favoring a TH2 immune response and activating alternative M2 macrophages.

Tarcio Teodoro Braga; Matheus Correa-Costa; Yuri Felipe Souza Guise; Angela Castoldi; Cassiano D. Oliveira; Meire Ioshie Hyane; Marcos Antonio Cenedeze; Simone A. Teixeira; Marcelo N. Muscará; Katia R. Perez; Iolanda M. Cuccovia; Alvaro Pacheco-Silva; Giselle Martins Gonçalves; Niels Olsen Saraiva Camara

Inflammation contributes to the pathogenesis of chronic kidney disease (CKD). Molecules released by the inflamed injured tissue can activate toll-like receptors (TLRs), thereby modulating macrophage and CD4+ T-cell activity. We propose that in renal fibrogenesis, M2 macrophages are recruited and activated in a T helper subset 2 cell (TH2)-prone inflammatory milieu in a MyD88-dependent manner. Mice submitted to unilateral ureteral ligation (UUO) demonstrated an increase in macrophage infiltration with collagen deposition after 7 d. Conversely, TLR2, TLR4 and MyD88 knockout (KO) mice had an improved renal function together with diminished TH2 cytokine production and decreased fibrosis formation. Moreover, TLR2, TLR4 and MyD88 KO animals exhibited less M2 macrophage infiltration, namely interleukin (IL)-10+ and CD206+ CDllbhigh cells, at 7 d after surgery. We evaluated the role of a TH2 cytokine in this context, and observed that the absence of IL-4 was associated with better renal function, decreased IL-13 and TGF-β levels, reduced arginase activity and a decrease in fibrosis formation when compared with IL-12 KO and wild-type (WT) animals. Indeed, the better renal outcomes and the decreased fibrosis formation were restricted to the deficiency of IL-4 in the hematopoietic compartment. Finally, macrophage depletion, rather than the absence of T cells, led to reduced lesions of the glomerular filtration barrier and decreased collagen deposition. These results provide evidence that future therapeutic strategies against renal fibrosis should be accompanied by the modulation of the M1:M2 and TH1:TH2 balance, as TH2 and M2 cells are predictive of fibrosis toward mechanisms that are sensed by innate immune response and triggered in a MyD88-dependent pathway.


PLOS ONE | 2010

Induction of Heme Oxygenase-1 Can Halt and Even Reverse Renal Tubule-Interstitial Fibrosis

Matheus Correa-Costa; Patricia Semedo; Ana Paula Fernandes da Silva Monteiro; Reinaldo Correia Silva; Rafael Luiz Pereira; Giselle Martins Gonçalves; Geórgia D.M. Marques; Marcos Antonio Cenedeze; Ana Carolina Guimarães Faleiros; Alexandre C. Keller; Maria Heloisa Massola Shimizu; Antonio Carlos Seguro; Marlene Antônia dos Reis; Alvaro Pacheco-Silva; Niels Olsen Saraiva Câmara

Background The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. Aim We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. Methods Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO) and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. Results Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-β protein production was significantly lower in Hemin-treated animals. Conclusion Treatment with Hemin was able both to prevent the progression of fibrosis and to reverse an established renal scar. Modulation of inflammation appears to be the major mechanism behind HO-1 cytoprotection.


Toxicology Letters | 2011

Formaldehyde induces lung inflammation by an oxidant and antioxidant enzymes mediated mechanism in the lung tissue

Adriana Lino-dos-Santos-Franco; Matheus Correa-Costa; Ana Carolina Durão; Ana Paula Ligeiro de Oliveira; Ana Cristina Breithaupt-Faloppa; Jônatas de Almeida Bertoni; Ricardo Martins Oliveira-Filho; Niels Olsen Saraiva Câmara; Tânia Marcourakis; Wothan Tavares-de-Lima

Formaldehyde (FA) is an indoor and outdoor pollutant widely used by many industries, and its exposure is associated with inflammation and oxidative stress in the airways. Our previous studies have demonstrated the role of reactive oxygen species (ROS) in lung inflammation induced by FA inhalation but did not identify source of the ROS. In the present study, we investigate the effects of FA on the activities and gene expression of glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferase (GST), superoxide dismutase (SOD) 1 and 2, catalase (CAT), nitric oxide synthase (iNOS and cNOS) and cyclooxygenase (COX) 1 and 2. The hypothesized link between NADPH-oxidase, nitric oxide synthase and cyclooxygenase, the lung inflammation after FA inhalation was also investigated. For experiments, male Wistar rats were submitted to FA inhalation (1%, 90 min daily) for 3 consecutive days. The treatments with apocynin and indomethacin before the FA exposure reduced the number of neutrophils recruited into the lung. Moreover, the treatments with apocynin and indomethacin blunted the effect of FA on the generation of IL-1β, while the treatments with L-NAME and apocynin reduced the generation of IL-6 by lung explants when compared to the untreated group. FA inhalation increased the levels of NO and hydrogen peroxide by BAL cells cultured and the treatments with apocynin and l-NAME reduced these generations. FA inhalation did not modify the activities of GPX, GR, GST and CAT but reduced the activity of SOD when compared to the naïve group. Significant increases in SOD-1 and -2, CAT, iNOS, cNOS and COX-1 expression were observed in the FA group compared to the naïve group. The treatments with apocynin, indomethacin and L-NAME reduced the gene expression of antioxidant and oxidant enzymes. In conclusion, our results indicate that FA causes a disruption of the physiological balance between oxidant and antioxidant enzymes in lung tissue, most likely favoring the oxidant pathways and thus positively modulating lung inflammation.


PLOS ONE | 2012

Transcriptome Analysis of Renal Ischemia/Reperfusion Injury and Its Modulation by Ischemic Pre-Conditioning or Hemin Treatment

Matheus Correa-Costa; Hatylas Azevedo; Mariane T. Amano; Giselle Martins Gonçalves; Meire Ioshie Hyane; Marcos Antonio Cenedeze; Paulo Guilherme Renesto; Alvaro Pacheco-Silva; Carlos Alberto Moreira-Filho; Niels Olsen Saraiva Câmara

Ischemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment. After identifying the profiles of differentially expressed genes observed for each comparison, we carried out functional enrichment analysis to reveal transcripts putatively involved in potential relevant biological processes and signaling pathways. The most relevant processes found in these comparisons were stress, apoptosis, cell differentiation, angiogenesis, focal adhesion, ECM-receptor interaction, ion transport, angiogenesis, mitosis and cell cycle, inflammatory response, olfactory transduction and regulation of actin cytoskeleton. In addition, the most important overrepresented pathways were MAPK, ErbB, JAK/STAT, Toll and Nod like receptors, Angiotensin II, Arachidonic acid metabolism, Wnt and coagulation cascade. Also, new insights were gained about the underlying protection mechanisms against renal IRI promoted by IPC and Hemin treatment. Venn diagram analysis allowed us to uncover common and exclusively differentially expressed genes between these two protective maneuvers, underscoring potential common and exclusive biological functions regulated in each case. In summary, IPC exclusively regulated the expression of genes belonging to stress, protein modification and apoptosis, highlighting the role of IPC in controlling exacerbated stress response. Treatment with the Hmox1 inducer Hemin, in turn, exclusively regulated the expression of genes associated with cell differentiation, metabolic pathways, cell cycle, mitosis, development, regulation of actin cytoskeleton and arachidonic acid metabolism, suggesting a pleiotropic effect for Hemin. These findings improve the biological understanding of how the kidney behaves after IRI. They also illustrate some possible underlying molecular mechanisms involved in kidney protection observed with IPC or Hemin treatment maneuvers.


Scientific Reports | 2017

Soluble Uric Acid Activates the NLRP3 Inflammasome

Tarcio Teodoro Braga; Maria Fernanda Forni; Matheus Correa-Costa; Rodrigo Nalio Ramos; José Alexandre Marzagão Barbuto; Paola Branco; Angela Castoldi; Meire Ioshie Hiyane; Mariana Rodrigues Davanso; Eicke Latz; Bernardo S. Franklin; Alicia J. Kowaltowski; Niels Olsen Saraiva Camara

Uric acid is a damage-associated molecular pattern (DAMP), released from ischemic tissues and dying cells which, when crystalized, is able to activate the NLRP3 inflammasome. Soluble uric acid (sUA) is found in high concentrations in the serum of great apes, and even higher in some diseases, before the appearance of crystals. In the present study, we sought to investigate whether uric acid, in the soluble form, could also activate the NLRP3 inflammasome and induce the production of IL-1β. We monitored ROS, mitochondrial area and respiratory parameters from macrophages following sUA stimulus. We observed that sUA is released in a hypoxic environment and is able to induce IL-1β release. This process is followed by production of mitochondrial ROS, ASC speck formation and caspase-1 activation. Nlrp3−/− macrophages presented a protected redox state, increased maximum and reserve oxygen consumption ratio (OCR) and higher VDAC protein levels when compared to WT and Myd88−/− cells. Using a disease model characterized by increased sUA levels, we observed a correlation between sUA, inflammasome activation and fibrosis. These findings suggest sUA activates the NLRP3 inflammasome. We propose that future therapeutic strategies for renal fibrosis should include strategies that block sUA or inhibit its recognition by phagocytes.


Toxicology and Applied Pharmacology | 2014

Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring.

Marília Maiellaro; Matheus Correa-Costa; Luana Beatriz Vitoretti; João Antônio Gimenes Júnior; Niels Olsen Saraiva Câmara; Wothan Tavares-de-Lima; Sandra Helena Poliselli Farsky; Adriana Lino-dos-Santos-Franco

Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment.


Mediators of Inflammation | 2014

Macrophage Trafficking as Key Mediator of Adenine-Induced Kidney Injury

Matheus Correa-Costa; Tarcio Teodoro Braga; Raphael José Ferreira Felizardo; Vinicius Andrade-Oliveira; Katia R. Perez; Iolanda M. Cuccovia; Meire Ioshie Hiyane; João Santana da Silva; Niels Olsen Saraiva Câmara

Macrophages play a special role in the onset of several diseases, including acute and chronic kidney injuries. In this sense, tubule interstitial nephritis (TIN) represents an underestimated insult, which can be triggered by different stimuli and, in the absence of a proper regulation, can lead to fibrosis deposition. Based on this perception, we evaluated the participation of macrophage recruitment in the development of TIN. Initially, we provided adenine-enriched food to WT and searched for macrophage presence and action in the kidney. Also, a group of animals were depleted of macrophages with the clodronate liposome while receiving adenine-enriched diet. We collected blood and renal tissue from these animals and renal function, inflammation, and fibrosis were evaluated. We observed higher expression of chemokines in the kidneys of adenine-fed mice and a substantial protection when macrophages were depleted. Then, we specifically investigated the role of some key chemokines, CCR5 and CCL3, in this TIN experimental model. Interestingly, CCR5 KO and CCL3 KO animals showed less renal dysfunction and a decreased proinflammatory profile. Furthermore, in those animals, there was less profibrotic signaling. In conclusion, we can suggest that macrophage infiltration is important for the onset of renal injury in the adenine-induced TIN.


Cellular Physiology and Biochemistry | 2014

Leptin Downregulates LPS-Induced Lung Injury: Role of Corticosterone and Insulin

Maristella A. Landgraf; Reinaldo Correia Silva; Matheus Correa-Costa; Meire Ioshie Hiyane; Maria Helena C. Carvalho; Richardt G. Landgraf; Niels Olsen Saraiva Câmara

Background/Aims: We investigated the effects of leptin in the development of lipopolysaccharide (LPS)-induced acute lung inflammation (ALI) in lean mice. Methods: Mice were administered leptin (1.0µg/g) or leptin (1.0µg/g) followed by LPS (1.5µg/g) intranasally. Additionally, some animals were given LPS (1.5µg/g) or saline intranasally alone, as a control. Tissue samples and fluids were collected six hours after instillation. Results: We demonstrated that leptin alone did not induce any injury. Local LPS exposure resulted in significant acute lung inflammation, characterized by a substantial increase in total cells, mainly neutrophils, in bronchoalveolar lavages (BAL). We also observed a significant lymphocyte influx into the lungs associated with enhanced lung expression of chemokines and cytokines (KC, RANTES, TNF-α, IFN-γ, GM-CSF and VEGF). LPS-induced ALI was characterized by the enhanced expression of ICAM-1 and iNOS in the lungs. Mice that received LPS showed an increase in insulin levels. Leptin, when administered prior to LPS instillation, abolished all of these effects. LPS induced an increase in corticosterone levels, and leptin potentiated this event. Conclusion: These data suggest that exogenous leptin may promote protection during sepsis, and downregulation of the insulin levels and upregulation of corticosterone may be important mechanisms in the amelioration of LPS-induced ALI.

Collaboration


Dive into the Matheus Correa-Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcos Antonio Cenedeze

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvaro Pacheco-Silva

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia Semedo

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge