Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meire Ioshie Hiyane is active.

Publication


Featured researches published by Meire Ioshie Hiyane.


Journal of The American Society of Nephrology | 2015

Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion

Vinicius Andrade-Oliveira; Mariane T. Amano; Matheus Correa-Costa; Angela Castoldi; Raphael José Ferreira Felizardo; Danilo Candido de Almeida; Ênio José Bassi; Pedro M. Moraes-Vieira; Meire Ioshie Hiyane; Andrea C.D. Rodas; Jean Pierre Schatzmann Peron; Cristhiane F. Aguiar; Marlene Antônia dos Reis; Willian R. Ribeiro; Claudete J. Valduga; Rui Curi; Marco Aurélio Ramirez Vinolo; Caroline Marcantonio Ferreira; Niels Olsen Saraiva Câmara

Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.


Diabetes | 2012

Immune Regulatory Properties of Allogeneic Adipose-Derived Mesenchymal Stem Cells in the Treatment of Experimental Autoimmune Diabetes

Ênio José Bassi; Pedro M. Moraes-Vieira; Carla S.R. Moreira-Sá; Danilo Candido de Almeida; Leonardo M. Vieira; Cláudia da Silva Cunha; Meire Ioshie Hiyane; Alexandre S. Basso; Alvaro Pacheco-Silva; Niels Olsen Saraiva Câmara

Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell–mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4+ Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-γ levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-β1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact–dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional β-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D.


PLOS ONE | 2012

TLR2, TLR4 and the MYD88 Signaling Pathway Are Crucial for Neutrophil Migration in Acute Kidney Injury Induced by Sepsis

Angela Castoldi; Tarcio Teodoro Braga; Matheus Correa-Costa; Cristhiane Fávero Aguiar; Ênio José Bassi; Reinaldo Correa-Silva; Rosa Maria Elias; Fábia Andréia Salvador; Pedro M. Moraes-Vieira; Marcos Antonio Cenedeze; Marlene Antônia dos Reis; Meire Ioshie Hiyane; Alvaro Pacheco-Silva; Giselle Martins Gonçalves; Niels Olsen Saraiva Câmara

The aim of this study was to investigate the role of TLR2, TLR4 and MyD88 in sepsis-induced AKI. C57BL/6 TLR2−/−, TLR4−/− and MyD88−/− male mice were subjected to sepsis by cecal ligation and puncture (CLP). Twenty four hours later, kidney tissue and blood samples were collected for analysis. The TLR2−/−, TLR4−/− and MyD88−/− mice that were subjected to CLP had preserved renal morphology, and fewer areas of hypoxia and apoptosis compared with the wild-type C57BL/6 mice (WT). MyD88−/− mice were completely protected compared with the WT mice. We also observed reduced expression of proinflammatory cytokines in the kidneys of the knockout mice compared with those of the WT mice and subsequent inhibition of increased vascular permeability in the kidneys of the knockout mice. The WT mice had increased GR1+low cells migration compared with the knockout mice and decreased in GR1+high cells migration into the peritoneal cavity. The TLR2−/−, TLR4−/−, and MyD88−/− mice had lower neutrophil infiltration in the kidneys. Depletion of neutrophils in the WT mice led to protection of renal function and less inflammation in the kidneys of these mice. Innate immunity participates in polymicrobial sepsis-induced AKI, mainly through the MyD88 pathway, by leading to an increased migration of neutrophils to the kidney, increased production of proinflammatory cytokines, vascular permeability, hypoxia and apoptosis of tubular cells.


Scientific Reports | 2017

Soluble Uric Acid Activates the NLRP3 Inflammasome

Tarcio Teodoro Braga; Maria Fernanda Forni; Matheus Correa-Costa; Rodrigo Nalio Ramos; José Alexandre Marzagão Barbuto; Paola Branco; Angela Castoldi; Meire Ioshie Hiyane; Mariana Rodrigues Davanso; Eicke Latz; Bernardo S. Franklin; Alicia J. Kowaltowski; Niels Olsen Saraiva Camara

Uric acid is a damage-associated molecular pattern (DAMP), released from ischemic tissues and dying cells which, when crystalized, is able to activate the NLRP3 inflammasome. Soluble uric acid (sUA) is found in high concentrations in the serum of great apes, and even higher in some diseases, before the appearance of crystals. In the present study, we sought to investigate whether uric acid, in the soluble form, could also activate the NLRP3 inflammasome and induce the production of IL-1β. We monitored ROS, mitochondrial area and respiratory parameters from macrophages following sUA stimulus. We observed that sUA is released in a hypoxic environment and is able to induce IL-1β release. This process is followed by production of mitochondrial ROS, ASC speck formation and caspase-1 activation. Nlrp3−/− macrophages presented a protected redox state, increased maximum and reserve oxygen consumption ratio (OCR) and higher VDAC protein levels when compared to WT and Myd88−/− cells. Using a disease model characterized by increased sUA levels, we observed a correlation between sUA, inflammasome activation and fibrosis. These findings suggest sUA activates the NLRP3 inflammasome. We propose that future therapeutic strategies for renal fibrosis should include strategies that block sUA or inhibit its recognition by phagocytes.


Mediators of Inflammation | 2014

Macrophage Trafficking as Key Mediator of Adenine-Induced Kidney Injury

Matheus Correa-Costa; Tarcio Teodoro Braga; Raphael José Ferreira Felizardo; Vinicius Andrade-Oliveira; Katia R. Perez; Iolanda M. Cuccovia; Meire Ioshie Hiyane; João Santana da Silva; Niels Olsen Saraiva Câmara

Macrophages play a special role in the onset of several diseases, including acute and chronic kidney injuries. In this sense, tubule interstitial nephritis (TIN) represents an underestimated insult, which can be triggered by different stimuli and, in the absence of a proper regulation, can lead to fibrosis deposition. Based on this perception, we evaluated the participation of macrophage recruitment in the development of TIN. Initially, we provided adenine-enriched food to WT and searched for macrophage presence and action in the kidney. Also, a group of animals were depleted of macrophages with the clodronate liposome while receiving adenine-enriched diet. We collected blood and renal tissue from these animals and renal function, inflammation, and fibrosis were evaluated. We observed higher expression of chemokines in the kidneys of adenine-fed mice and a substantial protection when macrophages were depleted. Then, we specifically investigated the role of some key chemokines, CCR5 and CCL3, in this TIN experimental model. Interestingly, CCR5 KO and CCL3 KO animals showed less renal dysfunction and a decreased proinflammatory profile. Furthermore, in those animals, there was less profibrotic signaling. In conclusion, we can suggest that macrophage infiltration is important for the onset of renal injury in the adenine-induced TIN.


Cellular Physiology and Biochemistry | 2014

Leptin Downregulates LPS-Induced Lung Injury: Role of Corticosterone and Insulin

Maristella A. Landgraf; Reinaldo Correia Silva; Matheus Correa-Costa; Meire Ioshie Hiyane; Maria Helena C. Carvalho; Richardt G. Landgraf; Niels Olsen Saraiva Câmara

Background/Aims: We investigated the effects of leptin in the development of lipopolysaccharide (LPS)-induced acute lung inflammation (ALI) in lean mice. Methods: Mice were administered leptin (1.0µg/g) or leptin (1.0µg/g) followed by LPS (1.5µg/g) intranasally. Additionally, some animals were given LPS (1.5µg/g) or saline intranasally alone, as a control. Tissue samples and fluids were collected six hours after instillation. Results: We demonstrated that leptin alone did not induce any injury. Local LPS exposure resulted in significant acute lung inflammation, characterized by a substantial increase in total cells, mainly neutrophils, in bronchoalveolar lavages (BAL). We also observed a significant lymphocyte influx into the lungs associated with enhanced lung expression of chemokines and cytokines (KC, RANTES, TNF-α, IFN-γ, GM-CSF and VEGF). LPS-induced ALI was characterized by the enhanced expression of ICAM-1 and iNOS in the lungs. Mice that received LPS showed an increase in insulin levels. Leptin, when administered prior to LPS instillation, abolished all of these effects. LPS induced an increase in corticosterone levels, and leptin potentiated this event. Conclusion: These data suggest that exogenous leptin may promote protection during sepsis, and downregulation of the insulin levels and upregulation of corticosterone may be important mechanisms in the amelioration of LPS-induced ALI.


Laboratory Investigation | 2014

Activation of platelet-activating factor receptor exacerbates renal inflammation and promotes fibrosis

Matheus Correa-Costa; Vinicius Andrade-Oliveira; Tarcio Teodoro Braga; Angela Castoldi; Cristhiane F. Aguiar; Clarice S.T. Origassa; Andrea C.D. Rodas; Meire Ioshie Hiyane; Denise Maria Avancini Costa Malheiros; Francisco J. Rios; Sonia Jancar; Niels Olsen Saraiva Câmara

Platelet-activating factor (PAF) is a lipid mediator with important pro-inflammatory effects, being synthesized by several cell types including kidney cells. Although there is evidence of its involvement in acute renal dysfunction, its role in progressive kidney injury is not completely known. In the present study, we investigated the role of PAF receptor (PAFR) in an experimental model of chronic renal disease. Wild-type (WT) and PAFR knockout (KO) mice underwent unilateral ureter obstruction (UUO), and at kill time, urine and kidney tissue was collected. PAFR KO animals compared with WT mice present: (a) less renal dysfunction, evaluated by urine protein/creatinine ratio; (b) less fibrosis evaluated by collagen deposition, type I collagen, Lysyl Oxidase-1 (LOX-1) and transforming growth factor β (TGF-β) gene expression, and higher expression of bone morphogenetic protein 7 (BMP-7) (3.3-fold lower TGF-β/BMP-7 ratio); (c) downregulation of extracellular matrix (ECM) and adhesion molecule-related machinery genes; and (d) lower levels of pro-inflammatory cytokines. These indicate that PAFR engagement by PAF or PAF-like molecules generated during UUO potentiates renal dysfunction and fibrosis and might promote epithelial-to-mesenchymal transition (EMT). Also, early blockade of PAFR after UUO leads to a protective effect, with less fibrosis deposition. In conclusion, PAFR signaling contributes to a pro-inflammatory environment in the model of obstructive nephropathy, favoring the fibrotic process, which lately will generate renal dysfunction and progressive organ failure.


Journal of Diabetes and Its Complications | 2016

Diabetes and increased lipid peroxidation are associated with systemic inflammation even in well-controlled patients.

Alliny de Souza Bastos; Dana T. Graves; Ana Paula de Melo Loureiro; Carlos Rossa Junior; Sâmia Cruz Tfaile Corbi; Fausto Frizzera; Raquel M. Scarel-Caminaga; Niels Olsen Saraiva Câmara; Oelisoa M. Andriankaja; Meire Ioshie Hiyane; Silvana Regina Perez Orrico

BACKGROUND The effect of the interaction between type 2 diabetes and dyslipidemia on inflammation and lipid peroxidation (LPO) has not been assessed. AIM To investigate whether diabetes coupled with dyslipidemia alters oxidative metabolism leading to increased LPO products and inflammatory status. METHODS 100 patients were divided into four groups based upon diabetic and dyslipidemic status: poorly controlled diabetes with dyslipidemia (DM-PC/D), well-controlled diabetes with dyslipidemia (DM-WC/D), normoglycemic individuals with dyslipidemia (NG/D), and normoglycemic individuals without dyslipidemia (NG/ND). Plasma was evaluated for an LPO product (MDA), antioxidant levels and inflammatory cytokines. RESULTS Diabetics presented significantly higher levels of LPO (p<0.05) and the DM-PC/D had higher levels of proinflammatory cytokines and MDA in the plasma in comparison with normoglycemics (p<0.05). Interestingly IL1-β, IL-6, and TNF-α in DM-WC/D were not statistically different from those in DM-PC/D. Normoglycemic individuals with dyslipidemia presented significantly increased levels of IL-6 and TNF-α when compared to normoglycemic without dyslipidemia (p<0.05). MDA levels were also positively correlated with the presence of DM complications (r=0.42, p<0.01). CONCLUSIONS These findings show that dyslipidemia is associated with an increased inflammatory status, even in well-controlled diabetics and in normoglycemics. Our results suggest that lipid metabolism and peroxidation are important for the development of inflammation, which is elevated in several complications associated with diabetes.


PLOS ONE | 2015

Adipose Tissue-Derived Stem Cells Reduce Acute and Chronic Kidney Damage in Mice

Marina Burgos‐Silva; Patricia Semedo-Kuriki; Cassiano Donizetti-Oliveira; Priscilla Barbosa Costa; Marco Antonio Cenedeze; Meire Ioshie Hiyane; Alvaro Pacheco-Silva; Niels Olsen Saraiva Câmara

Acute and chronic kidney injuries (AKI and CKI) constitute syndromes responsible for a large part of renal failures, and are today still associated with high mortality rates. Given the lack of more effective therapies, there has been intense focus on the use stem cells for organ protective and regenerative effects. Mesenchymal stem cells (MSCs) have shown great potential in the treatment of various diseases of immune character, although there is still debate on its mechanism of action. Thus, for a greater understanding of the role of MSCs, we evaluated the effect of adipose tissue-derived stem cells (AdSCs) in an experimental model of nephrotoxicity induced by folic acid (FA) in FVB mice. AdSC-treated animals displayed kidney functional improvement 24h after therapy, represented by reduced serum urea after FA. These data correlated with cell cycle regulation and immune response modulation via reduced chemokine expression and reduced neutrophil infiltrate. Long-term analyses, 4 weeks after FA, indicated that AdSC treatment reduced kidney fibrosis and chronic inflammation. These were demonstrated by reduced interstitial collagen deposition and tissue chemokine and cytokine expression. Thus, we concluded that AdSC treatment played a protective role in the framework of nephrotoxic injury via modulation of inflammation and cell cycle regulation, resulting in reduced kidney damage and functional improvement, inhibiting organ fibrosis and providing long-term immune regulation.


PLOS ONE | 2014

Long-Term Aerobic Exercise Protects against Cisplatin- Induced Nephrotoxicity by Modulating the Expression of IL-6 and HO-1

Mariana Miyagi; Marília Seelaender; Angela Castoldi; Danilo Candido de Almeida; Aline Villa Nova Bacurau; Vinicius Andrade-Oliveira; Lucas Maceratesi Enjiu; Marcus Pisciottano; Caroline Yuri Hayashida; Meire Ioshie Hiyane; Patricia C. Brum; Niels Olsen Saraiva Camara; Mariane T. Amano

Nephrotoxicity is substantial side effect for 30% of patients undergoing cancer therapy with cisplatin and may force them to change or even abandon the treatment. Studies regarding aerobic exercise have shown its efficacy for the treatment of many types of diseases and its capacity to reduce tumors. However, little is known about the impact of physical exercise on cisplatin-induced acute kidney injury (AKI). In the present study, our aim was to investigate the role of physical exercise in AKI induced by cisplatin. We submitted C57Bl6 male mice to seven weeks of chronic exercise on a training treadmill and treated them with single i.p. injection of cisplatin (20 mg/kg) in the last week. Exercise efficacy was confirmed by an increased capillary-to-fiber ratio in the gastrocnemius muscle of exercised groups (EX and CIS-EX). The group submitted to exercise before cisplatin administration (CIS-EX) exhibited less weight loss and decreased serum urea levels compared to the cisplatin group (CIS). Exercise also showed a protective role against cisplatin-induced cell death in the kidney. The CIS-EX group showed a lower inflammatory response, with less TNF and IL-10 expression in the kidney and serum. In the same group, we observed an increase of IL-6 and HO-1 expression in the kidney. Taken together, our results indicate that chronic aerobic exercise is able to attenuate AKI by inducing IL-6 and HO-1 production, which results in lower inflammatory and apoptotic profiles in the kidney.

Collaboration


Dive into the Meire Ioshie Hiyane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvaro Pacheco-Silva

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reinaldo Correia Silva

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge