Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathew K. Samimi is active.

Publication


Featured researches published by Mathew K. Samimi.


IEEE Access | 2013

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

Theodore S. Rappaport; Shu Sun; Rimma Mayzus; Hang Zhao; Yaniv Azar; Kevin Wang; George N. Wong; Jocelyn K. Schulz; Mathew K. Samimi; Felix Gutierrez

Recent years have witnessed the emergence of machine-to-machine (M2M) networks as an efficient means for providing automated communications among distributed devices. Automated M2M communications can offset the overhead costs of conventional operations, thus promoting their wider adoption in fixed and mobile platforms equipped with embedded processors and sensors/actuators. In this paper, we survey M2M technologies for applications such as healthcare, energy management and entertainment. In particular, we examine the typical architectures of home M2M networks and discuss the performance tradeoffs in existing designs. Our investigation covers quality of service, energy efficiency and security issues. Moreover, we review existing home networking projects to better understand the real-world applicability of these systems. This survey contributes to better understanding of the challenges in existing M2M networks and further shed new light on future research directions.The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.


IEEE Journal on Selected Areas in Communications | 2014

Millimeter Wave Channel Modeling and Cellular Capacity Evaluation

Mustafa Riza Akdeniz; Yuanpeng Liu; Mathew K. Samimi; Shu Sun; Sundeep Rangan; Theodore S. Rappaport; Elza Erkip

With the severe spectrum shortage in conventional cellular bands, millimeter wave (mmW) frequencies between 30 and 300 GHz have been attracting growing attention as a possible candidate for next-generation micro- and picocellular wireless networks. The mmW bands offer orders of magnitude greater spectrum than current cellular allocations and enable very high-dimensional antenna arrays for further gains via beamforming and spatial multiplexing. This paper uses recent real-world measurements at 28 and 73 GHz in New York, NY, USA, to derive detailed spatial statistical models of the channels and uses these models to provide a realistic assessment of mmW micro- and picocellular networks in a dense urban deployment. Statistical models are derived for key channel parameters, including the path loss, number of spatial clusters, angular dispersion, and outage. It is found that, even in highly non-line-of-sight environments, strong signals can be detected 100-200 m from potential cell sites, potentially with multiple clusters to support spatial multiplexing. Moreover, a system simulation based on the models predicts that mmW systems can offer an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks with no increase in cell density from current urban deployments.


IEEE Transactions on Communications | 2015

Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design

Theodore S. Rappaport; George R. MacCartney; Mathew K. Samimi; Shu Sun

The relatively unused millimeter-wave (mmWave) spectrum offers excellent opportunities to increase mobile capacity due to the enormous amount of available raw bandwidth. This paper presents experimental measurements and empirically-based propagation channel models for the 28, 38, 60, and 73 GHz mmWave bands, using a wideband sliding correlator channel sounder with steerable directional horn antennas at both the transmitter and receiver from 2011 to 2013. More than 15,000 power delay profiles were measured across the mmWave bands to yield directional and omnidirectional path loss models, temporal and spatial channel models, and outage probabilities. Models presented here offer side-by-side comparisons of propagation characteristics over a wide range of mmWave bands, and the results and models are useful for the research and standardization process of future mmWave systems. Directional and omnidirectional path loss models with respect to a 1 m close-in free space reference distance over a wide range of mmWave frequencies and scenarios using directional antennas in real-world environments are provided herein, and are shown to simplify mmWave path loss models, while allowing researchers to globally compare and standardize path loss parameters for emerging mmWave wireless networks. A new channel impulse response modeling framework, shown to agree with extensive mmWave measurements over several bands, is presented for use in link-layer simulations, using the observed fact that spatial lobes contain multipath energy that arrives at many different propagation time intervals. The results presented here may assist researchers in analyzing and simulating the performance of next-generation mmWave wireless networks that will rely on adaptive antennas and multiple-input and multiple-output (MIMO) antenna systems.


IEEE Communications Magazine | 2014

Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands

Ahmed Iyanda Sulyman; AlMuthanna Turki Nassar; Mathew K. Samimi; George R. MacCartney; Theodore S. Rappaport; Abdulhameed Alsanie

This article presents empirically-based large-scale propagation path loss models for fifth-generation cellular network planning in the millimeter-wave spectrum, based on real-world measurements at 28 GHz and 38 GHz in New York City and Austin, Texas, respectively. We consider industry-standard path loss models used for todays microwave bands, and modify them to fit the propagation data measured in these millimeter-wave bands for cellular planning. Network simulations with the proposed models using a commercial planning tool show that roughly three times more base stations are required to accommodate 5G networks (cell radii up to 200 m) compared to existing 3G and 4G systems (cell radii of 500 m to 1 km) when performing path loss simulations based on arbitrary pointing angles of directional antennas. However, when directional antennas are pointed in the single best directions at the base station and mobile, coverage range is substantially improved with little increase in interference, thereby reducing the required number of 5G base stations. Capacity gains for random pointing angles are shown to be 20 times greater than todays fourth-generation Long Term Evolution networks, and can be further improved when using directional antennas pointed in the strongest transmit and receive directions with the help of beam combining techniques.


international conference on communications | 2013

28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city

Hang Zhao; Rimma Mayzus; Shu Sun; Mathew K. Samimi; Jocelyn K. Schulz; Yaniv Azar; Kevin Wang; George N. Wong; Felix Gutierrez; Theodore S. Rappaport

In this paper, we present reflection coefficients and penetration losses for common building materials at 28 GHz for the design and deployment of future millimeter wave mobile communication networks. Reflections from walls and buildings and penetration losses were measured for indoor and outdoor materials, such as tinted glass, clear glass, brick, concrete, and drywall at 28 GHz in New York City. A 400 Mega-chip-per-second sliding correlator channel sounder and 24.5 dBi steerable horn antennas were used to emulate future mobile devices with adaptive antennas that will likely be used in future millimeter wave cellular systems [1]. Measurements in and around buildings show that outdoor building materials are excellent reflectors with the largest measured reflection coefficient of 0.896 for tinted glass as compared to indoor building materials that are less reflective. We also found that penetration loss is dependent not only on the number of obstructions and distance between transmitter and receiver, but also on the surrounding environment. The greatest penetration loss containing three interior walls of an office building was found to be 45.1 dB, with 11.39 m separation between the transmitter and receiver.


IEEE Journal on Selected Areas in Communications | 2014

Joint Spatial Division and Multiplexing for mm-Wave Channels

Ansuman Adhikary; Ebrahim Al Safadi; Mathew K. Samimi; Rui Wang; Giuseppe Caire; Theodore S. Rappaport; Andreas F. Molisch

Massive MIMO systems are well-suited for mm-Wave communications, as large arrays can be built with reasonable form factors, and the high array gains enable reasonable coverage even for outdoor communications. One of the main obstacles for using such systems in frequency-division duplex mode, namely, the high overhead for the feedback of channel state information (CSI) to the transmitter, can be mitigated by the recently proposed joint spatial division and multiplexing (JSDM) algorithm. In this paper, we analyze the performance of this algorithm in some realistic propagation channels that take into account the partial overlap of the angular spectra from different users, as well as the sparsity of mm-Wave channels. We formulate the problem of user grouping for two different objectives, namely, maximizing spatial multiplexing and maximizing total received power in a graph-theoretic framework. As the resulting problems are numerically difficult, we proposed (sub optimum) greedy algorithms as efficient solution methods. Numerical examples show that the different algorithms may be superior in different settings. We furthermore develop a new, “degenerate” version of JSDM that only requires average CSI at the transmitter and thus greatly reduces the computational burden. Evaluations in propagation channels obtained from ray tracing results, as well as in measured outdoor channels, show that this low-complexity version performs surprisingly well in mm-Wave channels.


vehicular technology conference | 2013

28 GHz Angle of Arrival and Angle of Departure Analysis for Outdoor Cellular Communications Using Steerable Beam Antennas in New York City

Mathew K. Samimi; Kevin Wang; Yaniv Azar; George N. Wong; Rimma Mayzus; Hang Zhao; Jocelyn K. Schulz; Shu Sun; Felix Gutierrez; Theodore S. Rappaport

Propagation measurements at 28 GHz were conducted in outdoor urban environments in New York City using four different transmitter locations and 83 receiver locations with distances of up to 500 m. A 400 mega- chip per second channel sounder with steerable 24.5 dBi horn antennas at the transmitter and receiver was used to measure the angular distributions of received multipath power over a wide range of propagation distances and urban settings. Measurements were also made to study the small-scale fading of closely-spaced power delay profiles recorded at half-wavelength (5.35 mm) increments along a small-scale linear track (10 wavelengths, or 107 mm) at two different receiver locations. Our measurements indicate that power levels for small- scale fading do not significantly fluctuate from the mean power level at a fixed angle of arrival. We propose here a new lobe modeling technique that can be used to create a statistical channel model for lobe path loss and shadow fading, and we provide many model statistics as a function of transmitter- receiver separation distance. Our work shows that New York City is a multipath-rich environment when using highly directional steerable horn antennas, and that an average of 2.5 signal lobes exists at any receiver location, where each lobe has an average total angle spread of 40.3° and an RMS angle spread of 7.8°. This work aims to create a 28 GHz statistical spatial channel model for future 5G cellular networks.


international conference on communications | 2015

3-D statistical channel model for millimeter-wave outdoor mobile broadband communications

Mathew K. Samimi; Theodore S. Rappaport

This paper presents an omnidirectional spatial and temporal 3-dimensional statistical channel model for 28 GHz dense urban non-line of sight environments. The channel model is developed from 28 GHz ultrawideband propagation measurements obtained with a 400 megachips per second broadband sliding correlator channel sounder and highly directional, steerable horn antennas in New York City. A 3GPP-like statistical channel model that is easy to implement in software or hardware is developed from measured power delay profiles and a synthesized method for providing absolute propagation delays recovered from 3-D ray-tracing, as well as measured angle of departure and angle of arrival power spectra. The extracted statistics are used to implement a MATLAB-based statistical simulator that generates 3-D millimeter-wave temporal and spatial channel coefficients that reproduce realistic impulse responses of measured urban channels. The methods and model presented here can be used for millimeter-wave system-wide simulations, and air interface design and capacity analyses.


IEEE Transactions on Microwave Theory and Techniques | 2016

3-D Millimeter-Wave Statistical Channel Model for 5G Wireless System Design

Mathew K. Samimi; Theodore S. Rappaport

This paper presents a 3-D statistical channel impulse response (IR) model for urban line of sight (LOS) and non-LOS channels developed from 28- and 73-GHz ultrawideband propagation measurements in New York City, useful in the design of 5G wireless systems that will operate in both the ultra-high frequency/microwave and millimeter-wave (mmWave) spectrum to increase channel capacities. A 3GPP-like stochastic IR channel model is developed from measured power delay profiles, angle of departure, and angle of arrival power spectra. The extracted statistics are used to implement a channel model and simulator capable of generating 3-D mmWave temporal and spatial channel parameters for arbitrary mmWave carrier frequency, signal bandwidth, and antenna beamwidth. The model presented here faithfully reproduces realistic IRs of measured urban channels, supporting air interface design of mmWave transceivers, filters, and multi-element antenna arrays.


global communications conference | 2014

Ultra-wideband statistical channel model for non line of sight millimeter-wave urban channels

Mathew K. Samimi; Theodore S. Rappaport

This paper presents ultra-wideband statistical spatial and omnidirectional channel models for 28 GHz millimeter-wave cellular dense urban Non-Line of Sight (NLOS) environments, developed from wideband measurements in New York City that used synthesized timing from 3D ray-tracing. An accurate 3GPP-like channel model has been developed, where model parameters are based on empirical distributions for time cluster and spatial (lobe) channel parameters. A statistical simulator capable of reproducing the joint temporal and spatial measured channel statistics is given here. A step-by-step procedure for generating channel coefficients is shown to validate measured statistics from 28 GHz field measurements, thus validating our statistical channel model, for use in standard bodies and system-level simulations for millimeter-wave wideband communications.

Collaboration


Dive into the Mathew K. Samimi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas F. Molisch

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Felix Gutierrez

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge