Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathew L. Coleman is active.

Publication


Featured researches published by Mathew L. Coleman.


Nature | 2013

Dynamic regulatory network controlling Th17 cell differentiation

Nir Yosef; Alex K. Shalek; Jellert T. Gaublomme; Hulin Jin; Youjin Lee; Amit Awasthi; Chuan Wu; Katarzyna Karwacz; Sheng Xiao; Marsela Jorgolli; David Gennert; Rahul Satija; Arvind Shakya; Diana Y. Lu; John J. Trombetta; Meenu R. Pillai; Peter J. Ratcliffe; Mathew L. Coleman; Mark Bix; Dean Tantin; Hongkun Park; Vijay K. Kuchroo; Aviv Regev

Despite their importance, the molecular circuits that control the differentiation of naive T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Here we combine transcriptional profiling at high temporal resolution, novel computational algorithms, and innovative nanowire-based perturbation tools to systematically derive and experimentally validate a model of the dynamic regulatory network that controls the differentiation of mouse TH17 cells, a proinflammatory T-cell subset that has been implicated in the pathogenesis of multiple autoimmune diseases. The TH17 transcriptional network consists of two self-reinforcing, but mutually antagonistic, modules, with 12 novel regulators, the coupled action of which may be essential for maintaining the balance between TH17 and other CD4+ T-cell subsets. Our study identifies and validates 39 regulatory factors, embeds them within a comprehensive temporal network and reveals its organizational principles; it also highlights novel drug targets for controlling TH17 cell differentiation.


Nature Reviews Molecular Cell Biology | 2004

RAS and RHO GTPases in G1-phase cell-cycle regulation

Mathew L. Coleman; Christopher J. Marshall; Michael F. Olson

As RAS mutations are among the most frequent alterations in human cancers, RAS proteins and their signalling pathways have been studied intensively. Here, we outline the contributions of H-RAS, N-RAS and K-RAS to cell-cycle progression and cell growth. We also summarize recent results that indicate how other members of the RAS-GTPase subfamily — including E-RAS, RHEB, R-RAS, TC21 and RAL, as well as RHO GTPases — promote proliferation by regulating the transcription, translation and degradation of key cell-cycle components.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH)

Matthew E. Cockman; David E. Lancaster; Ineke P. Stolze; Kirsty S. Hewitson; Michael A. McDonough; Mathew L. Coleman; Charlotte H. Coles; Xiaohong Yu; Ronald T. Hay; Steven C. Ley; Christopher W. Pugh; Neil J. Oldham; Norma Masson; Christopher J. Schofield; Peter J. Ratcliffe

Studies on hypoxia-sensitive pathways have revealed a series of Fe(II)-dependent dioxygenases that regulate hypoxia-inducible factor (HIF) by prolyl and asparaginyl hydroxylation. The recognition of these unprecedented signaling processes has led to a search for other substrates of the HIF hydroxylases. Here we show that the human HIF asparaginyl hydroxylase, factor inhibiting HIF (FIH), also efficiently hydroxylates specific asparaginyl (Asn)-residues within proteins of the IκB family. After the identification of a series of ankyrin repeat domain (ARD)-containing proteins in a screen for proteins interacting with FIH, the ARDs of p105 (NFKB1) and IκBα were shown to be efficiently hydroxylated by FIH at specific Asn residues in the hairpin loops linking particular ankyrin repeats. The target Asn residue is highly conserved as part of the ankyrin consensus, and peptides derived from a diverse range of ARD-containing proteins supported FIH enzyme activity. These findings demonstrate that this type of protein hydroxylation is not restricted to HIF and strongly suggest that FIH-dependent ARD hydroxylation is a common occurrence, potentially providing an oxygen-sensitive signal to a diverse range of processes.


Journal of Biological Chemistry | 2007

Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor.

Mathew L. Coleman; Michael A. McDonough; Kirsty S. Hewitson; Charlotte H. Coles; Jasmin Mecinović; Mariola J. Edelmann; Kristina M. Cook; Matthew E. Cockman; David E. Lancaster; Benedikt M. Kessler; Neil J. Oldham; Peter J. Ratcliffe; Christopher J. Schofield

The stability and activity of hypoxia-inducible factor (HIF) are regulated by the post-translational hydroxylation of specific prolyl and asparaginyl residues. We show that the HIF asparaginyl hydroxylase, factor inhibiting HIF (FIH), also catalyzes hydroxylation of highly conserved asparaginyl residues within ankyrin repeat (AR) domains (ARDs) of endogenous Notch receptors. AR hydroxylation decreases the extent of ARD binding to FIH while not affecting signaling through the canonical Notch pathway. ARD proteins were found to efficiently compete with HIF for FIH-dependent hydroxylation. Crystallographic analyses of the hydroxylated Notch ARD (2.35Å) and of Notch peptides bound to FIH (2.4–2.6Å) reveal the stereochemistry of hydroxylation on the AR and imply that significant conformational changes are required in the ARD fold in order to enable hydroxylation at the FIH active site. We propose that ARD proteins function as natural inhibitors of FIH and that the hydroxylation status of these proteins provides another oxygen-dependent interface that modulates HIF signaling.


Cellular and Molecular Life Sciences | 2009

Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing

James D. Webb; Mathew L. Coleman; Christopher W. Pugh

This article outlines the need for a homeostatic response to alterations in cellular oxygenation. It describes work on erythropoietin control that led to the discovery of the hypoxia-inducible transcription factor (HIF-1) and the parallel recognition that this system was responsive to a widespread oxygen-sensing mechanism. Subsequently, multiple HIF isoforms have been shown to have overlapping but non-redundant functions, controlling expression of genes involved in diverse processes such as angiogenesis, vascular tone, metal transport, glycolysis, mitochondrial function, cell growth and survival. The major role of prolyl and asparaginyl hydroxylation in regulating HIFs is described, as well as the identification of PHD1-3 and FIH as the oxygen-sensing enzymes responsible for these hydroxylations. Current understanding of other processes that modulate overall HIF activity, including influences from other signalling mechanisms such as kinases and nitric oxide levels, and the existence of a variety of feedback loops are outlined. The effects of some mutations in this pathway are documented as is knowledge of other substrates for these enzymes. The importance of PHD1-3 and FIH, and the large family of 2-oxoglutarate and iron(II)-dependent dioxygenases of which they are a part, in biology and medicine are discussed (part of a multi-author review).


Journal of Cell Biology | 2005

Actin-myosin–based contraction is responsible for apoptotic nuclear disintegration

Daniel R. Croft; Mathew L. Coleman; Shuixing Li; David Robertson; Teresa Sullivan; Colin L. Stewart; Michael F. Olson

Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization.


EMBO Reports | 2011

The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens

Christoph Loenarz; Mathew L. Coleman; Anna Boleininger; Bernd Schierwater; Peter W. H. Holland; Peter J. Ratcliffe; Christopher J. Schofield

The hypoxic response in humans is mediated by the hypoxia‐inducible transcription factor (HIF), for which prolyl hydroxylases (PHDs) act as oxygen‐sensing components. The evolutionary origins of the HIF system have been previously unclear. We demonstrate a functional HIF system in the simplest animal, Trichoplax adhaerens: HIF targets in T. adhaerens include glycolytic and metabolic enzymes, suggesting a role for HIF in the adaptation of basal multicellular animals to fluctuating oxygen levels. Characterization of the T. adhaerens PHDs and cross‐species complementation assays reveal a conserved oxygen‐sensing mechanism. Cross‐genomic analyses rationalize the relative importance of HIF system components, and imply that the HIF system is likely to be present in all animals, but is unique to this kingdom.


Nature | 2016

Tumour hypoxia causes DNA hypermethylation by reducing TET activity

Bernard Thienpont; Jessica Steinbacher; Hui Zhao; Flora D'Anna; Anna Kuchnio; Athanasios Ploumakis; Bart Ghesquière; Laurien Van Dyck; Bram Boeckx; Luc Schoonjans; Els Hermans; Frédéric Amant; Vessela N. Kristensen; Kian Peng Koh; Massimiliano Mazzone; Mathew L. Coleman; Thomas Carell; Peter Carmeliet; Diether Lambrechts

Hypermethylation of the promoters of tumour suppressor genes represses transcription of these genes, conferring growth advantages to cancer cells. How these changes arise is poorly understood. Here we show that the activity of oxygen-dependent ten-eleven translocation (TET) enzymes is reduced by tumour hypoxia in human and mouse cells. TET enzymes catalyse DNA demethylation through 5-methylcytosine oxidation. This reduction in activity occurs independently of hypoxia-associated alterations in TET expression, proliferation, metabolism, hypoxia-inducible factor activity or reactive oxygen species, and depends directly on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro. In patients, tumour suppressor gene promoters are markedly more methylated in hypoxic tumour tissue, independent of proliferation, stromal cell infiltration and tumour characteristics. Our data suggest that up to half of hypermethylation events are due to hypoxia, with these events conferring a selective advantage. Accordingly, increased hypoxia in mouse breast tumours increases hypermethylation, while restoration of tumour oxygenation abrogates this effect. Tumour hypoxia therefore acts as a novel regulator of DNA methylation.


Human Molecular Genetics | 2010

PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an Nε-dimethyl lysine demethylase

Christoph Loenarz; Wei Ge; Mathew L. Coleman; Nathan R. Rose; C.D.O. Cooper; Robert J. Klose; Peter J. Ratcliffe; Christopher J. Schofield

Mutations of human PHF8 cluster within its JmjC encoding exons and are linked to mental retardation (MR) and a cleft lip/palate phenotype. Sequence comparisons, employing structural insights, suggest that PHF8 contains the double stranded beta-helix fold and ferrous iron binding residues that are present in 2-oxoglutarate-dependent oxygenases. We report that recombinant PHF8 is an Fe(II) and 2-oxoglutarate-dependent N(epsilon)-methyl lysine demethylase, which acts on histone substrates. PHF8 is selective in vitro for N(epsilon)-di- and mono-methylated lysine residues and does not accept trimethyl substrates. Clinically observed mutations to the PHF8 gene cluster in exons encoding for the double stranded beta-helix fold and will therefore disrupt catalytic activity. The PHF8 missense mutation c.836C>T is associated with mild MR, mild dysmorphic features, and either unilateral or bilateral cleft lip and cleft palate in two male siblings. This mutant encodes a F279S variant of PHF8 that modifies a conserved hydrophobic region; assays with both peptides and intact histones reveal this variant to be catalytically inactive. The dependence of PHF8 activity on oxygen availability is interesting because the occurrence of fetal cleft lip has been demonstrated to increase with maternal hypoxia in mouse studies. Cleft lip and other congenital anomalies are also linked indirectly to maternal hypoxia in humans, including from maternal smoking and maternal anti-hypertensive treatment. Our results will enable further studies aimed at defining the molecular links between developmental changes in histone methylation status, congenital disorders and MR.


Nature Chemical Biology | 2012

Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans

Wei Ge; Alexander Wolf; Tianshu Feng; Chia Hua Ho; Rok Sekirnik; Adam Zayer; Nicolas Granatino; Matthew E. Cockman; Christoph Loenarz; Nikita D. Loik; Adam P. Hardy; Timothy D. W. Claridge; Refaat B. Hamed; Rasheduzzaman Chowdhury; Lingzhi Gong; Carol V. Robinson; David C. Trudgian; Miao Jiang; Mukram Mohamed Mackeen; James S. O. McCullagh; Yuliya Gordiyenko; Armin Thalhammer; Atsushi Yamamoto; Ming Yang; Phebee Liu-Yi; Zhihong Zhang; Marion S. Schmidt-Zachmann; Benedikt M. Kessler; Peter J. Ratcliffe; Gail M. Preston

The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.

Collaboration


Dive into the Mathew L. Coleman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge