Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathias M. Pires is active.

Publication


Featured researches published by Mathias M. Pires.


Science | 2013

Functional Extinction of Birds Drives Rapid Evolutionary Changes in Seed Size

Mauro Galetti; Roger Guevara; Marina Corrêa Côrtes; Rodrigo F. Fadini; Sandro Von Matter; Abraão de Barros Leite; Fábio M. Labecca; Thiago Ribeiro; Carolina da Silva Carvalho; Rosane G. Collevatti; Mathias M. Pires; Paulo R. Guimarães; Pedro H. Brancalion; Milton Cezar Ribeiro; Pedro Jordano

The Birds and the Seeds When species are lost from ecosystems through local extinction, the pattern of ecological interactions changes. Galetti et al. (p. 1086) show how the loss of large fruit-eating birds from tropical forest fragments in Brazil affects the reduction of seed size in a palm species. A data set was compiled that consisted of >9000 seeds measured in 22 populations over a large area of Atlantic rainforest, including seven areas where large-seed dispersers (toucans, cracids, and large cotingas) were extinct and 15 areas where they are still common. Local extinction of large fruit-eating birds selects for reduction of seed size in a tropical forest palm. Local extinctions have cascading effects on ecosystem functions, yet little is known about the potential for the rapid evolutionary change of species in human-modified scenarios. We show that the functional extinction of large-gape seed dispersers in the Brazilian Atlantic forest is associated with the consistent reduction of the seed size of a keystone palm species. Among 22 palm populations, areas deprived of large avian frugivores for several decades present smaller seeds than nondefaunated forests, with negative consequences for palm regeneration. Coalescence and phenotypic selection models indicate that seed size reduction most likely occurred within the past 100 years, associated with human-driven fragmentation. The fast-paced defaunation of large vertebrates is most likely causing unprecedented changes in the evolutionary trajectories and community composition of tropical forests.


BMC Microbiology | 2010

Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of fecal contamination

Camila Carlos; Mathias M. Pires; Nancy C. Stoppe; Elayse Maria Hachich; Maria Inês Zanoli Sato; Tania A. T. Gomes; Luiz Augusto do Amaral; Laura Maria Mariscal Ottoboni

BackgroundEscherichia coli strains are commonly found in the gut microflora of warm-blooded animals. These strains can be assigned to one of the four main phylogenetic groups, A, B1, B2 and D, which can be divided into seven subgroups (A0, A1, B1, B22, B23, D1 and D2), according to the combination of the three genetic markers chuA, yjaA and DNA fragment TspE4.C2. Distinct studies have demonstrated that these phylo-groups differ in the presence of virulence factors, ecological niches and life-history. Therefore, the aim of this work was to analyze the distribution of these E. coli phylo-groups in 94 human strains, 13 chicken strains, 50 cow strains, 16 goat strains, 39 pig strains and 29 sheep strains and to verify the potential of this analysis to investigate the source of fecal contamination.ResultsThe results indicated that the distribution of phylogenetic groups, subgroups and genetic markers is non-random in the hosts analyzed. Strains from group B1 were present in all hosts analyzed but were more prevalent in cow, goat and sheep samples. Subgroup B23 was only found in human samples. The diversity and the similarity indexes have indicated a similarity between the E. coli population structure of human and pig samples and among cow, goat and sheep samples. Correspondence analysis using contingence tables of subgroups, groups and genetic markers frequencies allowed the visualization of the differences among animal samples and the identification of the animal source of an external validation set. The classifier tools Binary logistic regression and Partial least square -- discriminant analysis, using the genetic markers profile of the strains, differentiated the herbivorous from the omnivorous strains, with an average error rate of 17%.ConclusionsThis is the first work, as far as we are aware, that identifies the major source of fecal contamination of a pool of strains instead of a unique strain. We concluded that the analysis of the E. coli population structure can be useful as a supplementary bacterial source tracking tool.


Journal of Animal Ecology | 2011

The nested assembly of individual-resource networks.

Mathias M. Pires; Paulo R. Guimarães; Márcio S. Araújo; Ariovaldo Antonio Giaretta; J. C. L. Costa; S. F. Dos Reis

1. Much of the current understanding of ecological systems is based on theory that does not explicitly take into account individual variation within natural populations. However, individuals may show substantial variation in resource use. This variation in turn may be translated into topological properties of networks that depict interactions among individuals and the food resources they consume (individual-resource networks). 2. Different models derived from optimal diet theory (ODT) predict highly distinct patterns of trophic interactions at the individual level that should translate into distinct network topologies. As a consequence, individual-resource networks can be useful tools in revealing the incidence of different patterns of resource use by individuals and suggesting their mechanistic basis. 3. In the present study, using data from several dietary studies, we assembled individual-resource networks of 10 vertebrate species, previously reported to show interindividual diet variation, and used a network-based approach to investigate their structure. 4. We found significant nestedness, but no modularity, in all empirical networks, indicating that (i) these populations are composed of both opportunistic and selective individuals and (ii) the diets of the latter are ordered as predictable subsets of the diets of the more opportunistic individuals. 5. Nested patterns are a common feature of species networks, and our results extend its generality to trophic interactions at the individual level. This pattern is consistent with a recently proposed ODT model, in which individuals show similar rank preferences but differ in their acceptance rate for alternative resources. Our findings therefore suggest a common mechanism underlying interindividual variation in resource use in disparate taxa.


Oecologia | 2014

Reconstructing past ecological networks: the reconfiguration of seed‑dispersal interactions after megafaunal extinction

Mathias M. Pires; Mauro Galetti; Camila I. Donatti; Marco A. Pizo; Rodolfo Dirzo; Paulo R. Guimarães

The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.


Journal of the Royal Society Interface | 2012

Interaction intimacy organizes networks of antagonistic interactions in different ways

Mathias M. Pires; Paulo R. Guimarães

Interaction intimacy, the degree of biological integration between interacting individuals, shapes the ecology and evolution of species interactions. A major question in ecology is whether interaction intimacy also shapes the way interactions are organized within communities. We combined analyses of network structure and food web models to test the role of interaction intimacy in determining patterns of antagonistic interactions, such as host–parasite, predator–prey and plant–herbivore interactions. Networks describing interactions with low intimacy were more connected, more nested and less modular than high-intimacy networks. Moreover, the performance of the models differed across networks with different levels of intimacy. All models reproduced well low-intimacy networks, whereas the more elaborate models were also capable of reproducing networks depicting interactions with higher levels of intimacy. Our results indicate the key role of interaction intimacy in organizing antagonisms, suggesting that greater interaction intimacy might be associated with greater complexity in the assembly rules shaping ecological networks.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Collapse of an ecological network in Ancient Egypt.

Justin D. Yeakel; Mathias M. Pires; Lars Rudolf; Nathaniel J. Dominy; Paul L. Koch; Paulo R. Guimarães; Thilo Gross

Significance The composition of animal communities directly impacts the stability of ecosystems. Here, we use historical information of species extinctions in Egypt over 6,000 years to reconstruct predator–prey interactions and determine to what extent observed changes in species composition influence predictions of community stability. Our study reveals that the roles of species and the stability of the community have fundamentally changed throughout the Holocene, and provides compelling evidence that local dynamic stability is informative of species persistence over time. The dynamics of ecosystem collapse are fundamental to determining how and why biological communities change through time, as well as the potential effects of extinctions on ecosystems. Here, we integrate depictions of mammals from Egyptian antiquity with direct lines of paleontological and archeological evidence to infer local extinctions and community dynamics over a 6,000-y span. The unprecedented temporal resolution of this dataset enables examination of how the tandem effects of human population growth and climate change can disrupt mammalian communities. We show that the extinctions of mammals in Egypt were nonrandom and that destabilizing changes in community composition coincided with abrupt aridification events and the attendant collapses of some complex societies. We also show that the roles of species in a community can change over time and that persistence is predicted by measures of species sensitivity, a function of local dynamic stability. To our knowledge, our study is the first high-resolution analysis of the ecological impacts of environmental change on predator–prey networks over millennial timescales and sheds light on the historical events that have shaped modern animal communities.


The Open Microbiology Journal | 2011

Subpathotypes of Avian Pathogenic Escherichia coli (APEC) Exist as Defined by their Syndromes and Virulence Traits

Victor Gonçalves Maturana; Fernanda de Pace; Camila Carlos; Mathias M. Pires; Tatiana de Campos; Gerson Nakazato; Eliana Guedes Stheling; Catherine M. Logue; Lisa K. Nolan; Wanderley Dias da Silveira

Avian pathogenic Escherichia coli (APEC) strains cause different types of systemic extraintestinal infections in poultry, collectively termed colibacillosis, which can cause significant economic losses in the poultry industry. To date, there have been no descriptions of genes or characteristics that allow for the classification of avian strains pathotypes responsible for causing specific diseases in their hosts. In this study we aimed to characterize avian E. coli strains representing 4 groups, including one of commensal strains (AFEC – Avian Fecal Escherichia coli) and 3 groups of APEC strains, where each group is responsible for causing a different disease syndrome in their respective hosts (septicemia, omphalitis and swollen head syndrome). We chose to examine several biological characteristics of these strains including: adhesion to eukaryotic cells, pathogenicity levels according to the lethal dose (50%) assay, phylogenetic group and virulence gene profiles. The comparison of strains based on these genotypic and phenotypic traits, using multivariate statisticals tools and complex networks, allowed us to infer information about the population structure of the studied groups. Our results indicate that APEC strains do not constitute a unique homogeneous group, but rather a structured set of subgroups, where each one is associated with a specific infectious syndrome which can possibly be used to define pathotypes or subpathotypes within APEC strains. These results offer new possibilities with which to study the genes responsible for various pathogenetic processes within APEC strains, and for vaccine development. It may be important to consider these subgroups when developing a vaccine in an effort for obtain cross protection, which has not yet been successfully accomplished when working with APEC strains.


Proceedings of the Royal Society B: Biological Sciences | 2015

Continental faunal exchange and the asymmetrical radiation of carnivores.

Mathias M. Pires; Daniele Silvestro; Tiago B. Quental

Lineages arriving on islands may undergo explosive evolutionary radiations owing to the wealth of ecological opportunities. Although studies on insular taxa have improved our understanding of macroevolutionary phenomena, we know little about the macroevolutionary dynamics of continental exchanges. Here we study the evolution of eight Carnivora families that have migrated across the Northern Hemisphere to investigate if continental invasions also result in explosive diversification dynamics. We used a Bayesian approach to estimate speciation and extinction rates from a substantial dataset of fossil occurrences while accounting for the incompleteness of the fossil record. Our analyses revealed a strongly asymmetrical pattern in which North American lineages invading Eurasia underwent explosive radiations, whereas lineages invading North America maintained uniform diversification dynamics. These invasions into Eurasia were characterized by high rates of speciation and extinction. The radiation of the arriving lineages in Eurasia coincide with the decline of established lineages or phases of climate change, suggesting differences in the ecological settings between the continents may be responsible for the disparity in diversification dynamics. These results reveal long-term outcomes of biological invasions and show that the importance of explosive radiations in shaping diversity extends beyond insular systems and have significant impact at continental scales.


Nature | 2017

Indirect effects drive coevolution in mutualistic networks

Paulo R. Guimarães; Mathias M. Pires; Pedro Jordano; Jordi Bascompte; John N. Thompson

Ecological interactions have been acknowledged to play a key role in shaping biodiversity. Yet a major challenge for evolutionary biology is to understand the role of ecological interactions in shaping trait evolution when progressing from pairs of interacting species to multispecies interaction networks. Here we introduce an approach that integrates coevolutionary dynamics and network structure. Our results show that non-interacting species can be as important as directly interacting species in shaping coevolution within mutualistic assemblages. The contribution of indirect effects differs among types of mutualism. Indirect effects are more likely to predominate in nested, species-rich networks formed by multiple-partner mutualisms, such as pollination or seed dispersal by animals, than in small and modular networks formed by intimate mutualisms, such as those between host plants and their protective ants. Coevolutionary pathways of indirect effects favour ongoing trait evolution by promoting slow but continuous reorganization of the adaptive landscape of mutualistic partners under changing environments. Our results show that coevolution can be a major process shaping species traits throughout ecological networks. These findings expand our understanding of how evolution driven by interactions occurs through the interplay of selection pressures moving along multiple direct and indirect pathways.


PLOS ONE | 2011

Do Food Web Models Reproduce the Structure of Mutualistic Networks

Mathias M. Pires; Paulo Inácio Prado; Paulo R. Guimarães

Background Simple models inspired by processes shaping consumer-resource interactions have helped to establish the primary processes underlying the organization of food webs, networks of trophic interactions among species. Because other ecological interactions such as mutualisms between plants and their pollinators and seed dispersers are inherently based in consumer-resource relationships we hypothesize that processes shaping food webs should organize mutualistic relationships as well. Methodology/Principal Findings We used a likelihood-based model selection approach to compare the performance of food web models and that of a model designed for mutualisms, in reproducing the structure of networks depicting mutualistic relationships. Our results show that these food web models are able to reproduce the structure of most of the mutualistic networks and even the simplest among the food web models, the cascade model, often reproduce overall structural properties of real mutualistic networks. Conclusions/Significance Based on our results we hypothesize that processes leading to feeding hierarchy, which is a characteristic shared by all food web models, might be a fundamental aspect in the assembly of mutualisms. These findings suggest that similar underlying ecological processes might be important in organizing different types of interactions.

Collaboration


Dive into the Mathias M. Pires's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sérgio F. dos Reis

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo G. Martins

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Pedro Jordano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Eleonore Z. F. Setz

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge