Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathias Walzer is active.

Publication


Featured researches published by Mathias Walzer.


Nature Methods | 2016

OpenMS: a flexible open-source software platform for mass spectrometry data analysis

Hannes L. Röst; Timo Sachsenberg; Stephan Aiche; Chris Bielow; Hendrik Weisser; Fabian Aicheler; Sandro Andreotti; Hans-Christian Ehrlich; Petra Gutenbrunner; Erhan Kenar; Xiao Liang; Sven Nahnsen; Lars Nilse; Julianus Pfeuffer; George Rosenberger; Marc Rurik; Uwe Schmitt; Johannes Veit; Mathias Walzer; David Wojnar; Witold Wolski; Oliver Schilling; Jyoti S. Choudhary; Lars Malmström; Ruedi Aebersold; Knut Reinert; Oliver Kohlbacher

High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and reproducible analysis difficult. We present OpenMS 2.0 (http://www.openms.de), a robust, open-source, cross-platform software specifically designed for the flexible and reproducible analysis of high-throughput MS data. The extensible OpenMS software implements common mass spectrometric data processing tasks through a well-defined application programming interface in C++ and Python and through standardized open data formats. OpenMS additionally provides a set of 185 tools and ready-made workflows for common mass spectrometric data processing tasks, which enable users to perform complex quantitative mass spectrometric analyses with ease.


Molecular & Cellular Proteomics | 2014

The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience

Johannes Griss; Andrew R. Jones; Timo Sachsenberg; Mathias Walzer; Laurent Gatto; Jürgen Hartler; Gerhard G. Thallinger; Reza M. Salek; Christoph Steinbeck; Nadin Neuhauser; Jürgen Cox; Steffen Neumann; Jun Fan; Florian Reisinger; Qing-Wei Xu; Noemi del Toro; Yasset Perez-Riverol; Fawaz Ghali; Nuno Bandeira; Ioannis Xenarios; Oliver Kohlbacher; Juan Antonio Vizcaíno; Henning Hermjakob

The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online.


Nature Communications | 2013

Mouse urinary peptides provide a molecular basis for genotype discrimination by nasal sensory neurons

Theo Sturm; Trese Leinders-Zufall; Boris Macek; Mathias Walzer; Stephan Jung; Beate Pömmerl; Stefan Stevanovic; Frank Zufall; Peter Overath; Hans-Georg Rammensee

Selected groups of peptides, including those that are presented by major histocompatibility complex (MHC) proteins, have been proposed to transmit information to the olfactory system of vertebrates via their ability to stimulate chemosensory neurons. However, the lack of knowledge about such peptides in natural sources accessible for nasal recognition has been a major barrier for this hypothesis. Here we analyse urinary peptides from selected mouse strains with respect to genotype-related individual differences. We discover many abundant peptides with single amino-acid variations corresponding to genomic differences. The polymorphism of major urinary proteins is reflected by variations in prominent urinary peptides. We also demonstrate an MHC-dependent peptide (SIINFEKL) occurring at very low concentrations in mouse urine. Chemoreceptive neurons in the vomeronasal organ detect and discriminate single amino-acid variation peptides as well as SIINFEKL. Hence, urinary peptides represent a real-time sampling of the expressed genome available for chemosensory assessment by other individuals.


Molecular & Cellular Proteomics | 2013

The mzQuantML data standard for mass spectrometry-based quantitative studies in proteomics

Mathias Walzer; Da Qi; Gerhard Mayer; Julian Uszkoreit; Martin Eisenacher; Timo Sachsenberg; Faviel F. Gonzalez-Galarza; Jun Fan; Conrad Bessant; Eric W. Deutsch; Florian Reisinger; Juan Antonio Vizcaíno; J. Alberto Medina-Aunon; Juan Pablo Albar; Oliver Kohlbacher; Andrew R. Jones

The range of heterogeneous approaches available for quantifying protein abundance via mass spectrometry (MS)1 leads to considerable challenges in modeling, archiving, exchanging, or submitting experimental data sets as supplemental material to journals. To date, there has been no widely accepted format for capturing the evidence trail of how quantitative analysis has been performed by software, for transferring data between software packages, or for submitting to public databases. In the context of the Proteomics Standards Initiative, we have developed the mzQuantML data standard. The standard can represent quantitative data about regions in two-dimensional retention time versus mass/charge space (called features), peptides, and proteins and protein groups (where there is ambiguity regarding peptide-to-protein inference), and it offers limited support for small molecule (metabolomic) data. The format has structures for representing replicate MS runs, grouping of replicates (for example, as study variables), and capturing the parameters used by software packages to arrive at these values. The format has the capability to reference other standards such as mzML and mzIdentML, and thus the evidence trail for the MS workflow as a whole can now be described. Several software implementations are available, and we encourage other bioinformatics groups to use mzQuantML as an input, internal, or output format for quantitative software and for structuring local repositories. All project resources are available in the public domain from the HUPO Proteomics Standards Initiative http://www.psidev.info/mzquantml.


Molecular & Cellular Proteomics | 2014

qcML: An Exchange Format for Quality Control Metrics from Mass Spectrometry Experiments

Mathias Walzer; Lucia Espona Pernas; Sara Nasso; Wout Bittremieux; Sven Nahnsen; Pieter Kelchtermans; Peter Pichler; Henk van den Toorn; An Staes; Jonathan Vandenbussche; Michael Mazanek; Thomas Taus; Richard A. Scheltema; Christian D. Kelstrup; Laurent Gatto; Bas van Breukelen; Stephan Aiche; Dirk Valkenborg; Kris Laukens; Kathryn S. Lilley; J. Olsen; Albert J. R. Heck; Karl Mechtler; Ruedi Aebersold; Kris Gevaert; Juan Antonio Vizcaíno; Henning Hermjakob; Oliver Kohlbacher; Lennart Martens

Quality control is increasingly recognized as a crucial aspect of mass spectrometry based proteomics. Several recent papers discuss relevant parameters for quality control and present applications to extract these from the instrumental raw data. What has been missing, however, is a standard data exchange format for reporting these performance metrics. We therefore developed the qcML format, an XML-based standard that follows the design principles of the related mzML, mzIdentML, mzQuantML, and TraML standards from the HUPO-PSI (Proteomics Standards Initiative). In addition to the XML format, we also provide tools for the calculation of a wide range of quality metrics as well as a database format and interconversion tools, so that existing LIMS systems can easily add relational storage of the quality control data to their existing schema. We here describe the qcML specification, along with possible use cases and an illustrative example of the subsequent analysis possibilities. All information about qcML is available at http://code.google.com/p/qcml.


Nature Methods | 2016

Recognizing millions of consistently unidentified spectra across hundreds of shotgun proteomics datasets

Johannes Griss; Yasset Perez-Riverol; Steve Lewis; David L. Tabb; Jose Ángel Dianes; Noemi del-Toro; Marc Rurik; Mathias Walzer; Oliver Kohlbacher; Henning Hermjakob; Rui Wang; Juan Antonio Vizcaíno

Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average, 75% of spectra analyzed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large scale to shed light on these unidentified spectra. The Proteomics Identifications (PRIDE) Database Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in the PRIDE Archive, coming from hundreds of data sets, we were able to consistently characterize spectra into three distinct groups: (1) incorrectly identified, (2) correctly identified but below the set scoring threshold, and (3) truly unidentified. Using multiple complementary analysis approaches, we were able to identify ∼20% of the consistently unidentified spectra. The complete spectrum-clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra.


Proteomics | 2015

Workflows for automated downstream data analysis and visualization in large-scale computational mass spectrometry.

Stephan Aiche; Timo Sachsenberg; Erhan Kenar; Mathias Walzer; Bernd Wiswedel; Theresa Kristl; Matthew Boyles; Albert Duschl; Christian G. Huber; Michael R. Berthold; Knut Reinert; Oliver Kohlbacher

MS‐based proteomics and metabolomics are rapidly evolving research fields driven by the development of novel instruments, experimental approaches, and analysis methods. Monolithic analysis tools perform well on single tasks but lack the flexibility to cope with the constantly changing requirements and experimental setups. Workflow systems, which combine small processing tools into complex analysis pipelines, allow custom‐tailored and flexible data‐processing workflows that can be published or shared with collaborators. In this article, we present the integration of established tools for computational MS from the open‐source software framework OpenMS into the workflow engine Konstanz Information Miner (KNIME) for the analysis of large datasets and production of high‐quality visualizations. We provide example workflows to demonstrate combined data processing and visualization for three diverse tasks in computational MS: isobaric mass tag based quantitation in complex experimental setups, label‐free quantitation and identification of metabolites, and quality control for proteomics experiments.


Journal of Hepatology | 2016

Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient

Markus W. Löffler; P. Anoop Chandran; Karoline Laske; Christopher Schroeder; Irina Bonzheim; Mathias Walzer; Franz J. Hilke; Nico Trautwein; Daniel J. Kowalewski; Heiko Schuster; Marc Günder; Viviana A. Carcamo Yañez; Christopher Mohr; Marc Sturm; Hp Nguyen; Olaf Riess; Peter Bauer; Sven Nahnsen; Silvio Nadalin; Derek Zieker; Jörg Glatzle; Karolin Thiel; Nicole Schneiderhan-Marra; Stephan Clasen; Hans Bösmüller; Falko Fend; Oliver Kohlbacher; Cécile Gouttefangeas; Stefan Stevanovic; Alfred Königsrainer

Graphical abstract


Journal of Biotechnology | 2017

OpenMS – A platform for reproducible analysis of mass spectrometry data ☆

Julianus Pfeuffer; Timo Sachsenberg; Oliver Alka; Mathias Walzer; Alexander Fillbrunn; Lars Nilse; Oliver Schilling; Knut Reinert; Oliver Kohlbacher

BACKGROUND In recent years, several mass spectrometry-based omics technologies emerged to investigate qualitative and quantitative changes within thousands of biologically active components such as proteins, lipids and metabolites. The research enabled through these methods potentially contributes to the diagnosis and pathophysiology of human diseases as well as to the clarification of structures and interactions between biomolecules. Simultaneously, technological advances in the field of mass spectrometry leading to an ever increasing amount of data, demand high standards in efficiency, accuracy and reproducibility of potential analysis software. RESULTS This article presents the current state and ongoing developments in OpenMS, a versatile open-source framework aimed at enabling reproducible analyses of high-throughput mass spectrometry data. It provides implementations of frequently occurring processing operations on MS data through a clean application programming interface in C++ and Python. A collection of 185 tools and ready-made workflows for typical MS-based experiments enable convenient analyses for non-developers and facilitate reproducible research without losing flexibility. CONCLUSIONS OpenMS will continue to increase its ease of use for developers as well as users with improved continuous integration/deployment strategies, regular trainings with updated training materials and multiple sources of support. The active developer community ensures the incorporation of new features to support state of the art research.


Bioinformatics | 2016

FRED 2: an immunoinformatics framework for Python

Benjamin Schubert; Mathias Walzer; Hans-Philipp Brachvogel; András Szolek; Christopher Mohr; Oliver Kohlbacher

Summary: Immunoinformatics approaches are widely used in a variety of applications from basic immunological to applied biomedical research. Complex data integration is inevitable in immunological research and usually requires comprehensive pipelines including multiple tools and data sources. Non-standard input and output formats of immunoinformatics tools make the development of such applications difficult. Here we present FRED 2, an open-source immunoinformatics framework offering easy and unified access to methods for epitope prediction and other immunoinformatics applications. FRED 2 is implemented in Python and designed to be extendable and flexible to allow rapid prototyping of complex applications. Availability and implementation: FRED 2 is available at http://fred-2.github.io Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the Mathias Walzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Antonio Vizcaíno

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Nahnsen

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Yasset Perez-Riverol

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge