Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timo Sachsenberg is active.

Publication


Featured researches published by Timo Sachsenberg.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana

Sascha Laubinger; Timo Sachsenberg; Georg Zeller; Wolfgang Busch; Jan U. Lohmann; Gunnar Rätsch; Detlef Weigel

The processing of Arabidopsis thaliana microRNAs (miRNAs) from longer primary transcripts (pri-miRNAs) requires the activity of several proteins, including DICER-LIKE1 (DCL1), the double-stranded RNA-binding protein HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). It has been noted before that the morphological appearance of weak se mutants is reminiscent of plants with mutations in ABH1/CBP80 and CBP20, which encode the two subunits of the nuclear cap-binding complex. We report that, like SE, the cap-binding complex is necessary for proper processing of pri-miRNAs. Inactivation of either ABH1/CBP80 or CBP20 results in decreased levels of mature miRNAs accompanied by apparent stabilization of pri-miRNAs. Whole-genome tiling array analyses reveal that se, abh1/cbp80, and cbp20 mutants also share similar splicing defects, leading to the accumulation of many partially spliced transcripts. This is unlikely to be an indirect consequence of improper miRNA processing or other mRNA turnover pathways, because introns retained in se, abh1/cbp80, and cbp20 mutants are not affected by mutations in other genes required for miRNA processing or for nonsense-mediated mRNA decay. Taken together, our results uncover dual roles in splicing and miRNA processing that distinguish SE and the cap-binding complex from specialized miRNA processing factors such as DCL1 and HYL1.


Plant Journal | 2009

Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays

Georg Zeller; Stefan R. Henz; Christian Widmer; Timo Sachsenberg; Gunnar Rätsch; Detlef Weigel; Sascha Laubinger

The responses of plants to abiotic stresses are accompanied by massive changes in transcriptome composition. To provide a comprehensive view of stress-induced changes in the Arabidopsis thaliana transcriptome, we have used whole-genome tiling arrays to analyze the effects of salt, osmotic, cold and heat stress as well as application of the hormone abscisic acid (ABA), an important mediator of stress responses. Among annotated genes in the reference strain Columbia we have found many stress-responsive genes, including several transcription factor genes as well as pseudogenes and transposons that have been missed in previous analyses with standard expression arrays. In addition, we report hundreds of newly identified, stress-induced transcribed regions. These often overlap with known, annotated genes. The results are accessible through the Arabidopsis thaliana Tiling Array Express (At-TAX) homepage, which provides convenient tools for displaying expression values of annotated genes, as well as visualization of unannotated transcribed regions along each chromosome.


Genome Biology | 2008

At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana.

Sascha Laubinger; Georg Zeller; Stefan R. Henz; Timo Sachsenberg; Christian Widmer; Naïra Naouar; Marnik Vuylsteke; Bernhard Schölkopf; Gunnar Rätsch; Detlef Weigel

Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage.


Nature Methods | 2014

Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins

Katharina Kramer; Timo Sachsenberg; Benedikt M. Beckmann; Saadia Qamar; Kum-Loong Boon; Matthias W. Hentze; Oliver Kohlbacher; Henning Urlaub

RNA-protein complexes play pivotal roles in many central biological processes. Although methods based on high-throughput sequencing have advanced our ability to identify the specific RNAs bound by a particular protein, there is a need for precise and systematic ways to identify RNA interaction sites on proteins. We have developed an experimental and computational workflow combining photo-induced cross-linking, high-resolution mass spectrometry and automated analysis of the resulting mass spectra for the identification of cross-linked peptides, cross-linking sites and the cross-linked RNA oligonucleotide moieties of such RNA-binding proteins. The workflow can be applied to any RNA-protein complex of interest or to whole proteomes. We applied the approach to human and yeast mRNA-protein complexes in vitro and in vivo, demonstrating its powerful utility by identifying 257 cross-linking sites on 124 distinct RNA-binding proteins. The open-source software pipeline developed for this purpose, RNPxl, is available as part of the OpenMS project.


Nature Methods | 2016

OpenMS: a flexible open-source software platform for mass spectrometry data analysis

Hannes L. Röst; Timo Sachsenberg; Stephan Aiche; Chris Bielow; Hendrik Weisser; Fabian Aicheler; Sandro Andreotti; Hans-Christian Ehrlich; Petra Gutenbrunner; Erhan Kenar; Xiao Liang; Sven Nahnsen; Lars Nilse; Julianus Pfeuffer; George Rosenberger; Marc Rurik; Uwe Schmitt; Johannes Veit; Mathias Walzer; David Wojnar; Witold Wolski; Oliver Schilling; Jyoti S. Choudhary; Lars Malmström; Ruedi Aebersold; Knut Reinert; Oliver Kohlbacher

High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and reproducible analysis difficult. We present OpenMS 2.0 (http://www.openms.de), a robust, open-source, cross-platform software specifically designed for the flexible and reproducible analysis of high-throughput MS data. The extensible OpenMS software implements common mass spectrometric data processing tasks through a well-defined application programming interface in C++ and Python and through standardized open data formats. OpenMS additionally provides a set of 185 tools and ready-made workflows for common mass spectrometric data processing tasks, which enable users to perform complex quantitative mass spectrometric analyses with ease.


Molecular & Cellular Proteomics | 2014

The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience

Johannes Griss; Andrew R. Jones; Timo Sachsenberg; Mathias Walzer; Laurent Gatto; Jürgen Hartler; Gerhard G. Thallinger; Reza M. Salek; Christoph Steinbeck; Nadin Neuhauser; Jürgen Cox; Steffen Neumann; Jun Fan; Florian Reisinger; Qing-Wei Xu; Noemi del Toro; Yasset Perez-Riverol; Fawaz Ghali; Nuno Bandeira; Ioannis Xenarios; Oliver Kohlbacher; Juan Antonio Vizcaíno; Henning Hermjakob

The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome

Sascha Laubinger; Georg Zeller; Stefan R. Henz; Sabine Buechel; Timo Sachsenberg; Jia-Wei Wang; Gunnar Rätsch; Detlef Weigel

In Arabidopsis thaliana, four different dicer-like (DCL) proteins have distinct but partially overlapping functions in the biogenesis of microRNAs (miRNAs) and siRNAs from longer, noncoding precursor RNAs. To analyze the impact of different components of the small RNA biogenesis machinery on the transcriptome, we subjected dcl and other mutants impaired in small RNA biogenesis to whole-genome tiling array analysis. We compared both protein-coding genes and noncoding transcripts, including most pri-miRNAs, in two tissues and several stress conditions. Our analysis revealed a surprising number of common targets in dcl1 and dcl2 dcl3 dcl4 triple mutants. Furthermore, our results suggest that the DCL1 is not only involved in miRNA action but also contributes to silencing of a subset of transposons, apparently through an effect on DNA methylation.


Molecular & Cellular Proteomics | 2013

The mzQuantML data standard for mass spectrometry-based quantitative studies in proteomics

Mathias Walzer; Da Qi; Gerhard Mayer; Julian Uszkoreit; Martin Eisenacher; Timo Sachsenberg; Faviel F. Gonzalez-Galarza; Jun Fan; Conrad Bessant; Eric W. Deutsch; Florian Reisinger; Juan Antonio Vizcaíno; J. Alberto Medina-Aunon; Juan Pablo Albar; Oliver Kohlbacher; Andrew R. Jones

The range of heterogeneous approaches available for quantifying protein abundance via mass spectrometry (MS)1 leads to considerable challenges in modeling, archiving, exchanging, or submitting experimental data sets as supplemental material to journals. To date, there has been no widely accepted format for capturing the evidence trail of how quantitative analysis has been performed by software, for transferring data between software packages, or for submitting to public databases. In the context of the Proteomics Standards Initiative, we have developed the mzQuantML data standard. The standard can represent quantitative data about regions in two-dimensional retention time versus mass/charge space (called features), peptides, and proteins and protein groups (where there is ambiguity regarding peptide-to-protein inference), and it offers limited support for small molecule (metabolomic) data. The format has structures for representing replicate MS runs, grouping of replicates (for example, as study variables), and capturing the parameters used by software packages to arrive at these values. The format has the capability to reference other standards such as mzML and mzIdentML, and thus the evidence trail for the MS workflow as a whole can now be described. Several software implementations are available, and we encourage other bioinformatics groups to use mzQuantML as an input, internal, or output format for quantitative software and for structuring local repositories. All project resources are available in the public domain from the HUPO Proteomics Standards Initiative http://www.psidev.info/mzquantml.


Bioinformatics | 2017

BioContainers: an open-source and community-driven framework for software standardization

Felipe da Veiga Leprevost; Björn Grüning; Saulo Alves Aflitos; Hannes L. Röst; Julian Uszkoreit; Harald Barsnes; Marc Vaudel; Pablo Moreno; Laurent Gatto; Jonas Weber; Mingze Bai; Rafael C. Jimenez; Timo Sachsenberg; Julianus Pfeuffer; Roberto Vera Alvarez; Johannes Griss; Alexey I. Nesvizhskii; Yasset Perez-Riverol

Abstract Motivation BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). Availability and Implementation The software is freely available at github.com/BioContainers/.


Journal of Proteome Research | 2015

MetaProSIP: Automated Inference of Stable Isotope Incorporation Rates in Proteins for Functional Metaproteomics

Timo Sachsenberg; Florian-Alexander Herbst; Martin Taubert; René Kermer; Nico Jehmlich; Martin von Bergen; Jana Seifert; Oliver Kohlbacher

We propose a joint experimental and theoretical approach to the automated reconstruction of elemental fluxes in microbial communities. While stable isotope probing of proteins (protein-SIP) has been successfully applied to study interactions and elemental carbon and nitrogen fluxes, the volume and complexity of mass spectrometric data in protein-SIP experiments pose new challenges for data analysis. Together with a flexible experimental setup, the novel bioinformatics tool MetaProSIP offers an automated high-throughput solution for a wide range of (13)C or (15)N protein-SIP experiments with special emphasis on the analysis of metaproteomic experiments where differential labeling of organisms can occur. The information calculated in MetaProSIP includes the determination of multiple relative isotopic abundances, the labeling ratio between old and new synthesized proteins, and the shape of the isotopic distribution. These parameters define the metabolic capacities and dynamics within the investigated microbial culture. MetaProSIP features a high degree of reproducibility, reliability, and quality control reporting. The ability to embed into the OpenMS framework allows for flexible construction of custom-tailored workflows. Software and documentation are available under an open-source license at www.openms.de/MetaProSIP.

Collaboration


Dive into the Timo Sachsenberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasset Perez-Riverol

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Knut Reinert

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge