Mathieu Carpentier
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mathieu Carpentier.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Fabrice Allain; Christophe Vanpouille; Mathieu Carpentier; Marie-Christine Slomianny; Sandrine Durieux; Geneviève Spik
Cyclophilins A and B (CyPA and CyPB) are cyclosporin A-binding proteins that are involved in inflammatory events. We have reported that CyPB interacts with two types of cell-surface-binding sites. The first site corresponds to a functional receptor and requires interaction with the central core of CyPB. This region is highly conserved in cyclophilins, suggesting that CyPA and CyPB might share biological activities mediated by interaction with this receptor. The second site is identified with glycosaminoglycans (GAGs), the binding region located in the N terminus of CyPB. The difference in the N-terminal extensions of CyPA and CyPB suggests that a unique interaction with GAGs might account for selective activity of CyPB. To explore this hypothesis, we analyzed the lymphocyte responses triggered by CyPA, CyPB, and CyPBKKK−, a mutant unable to interact with GAGs. The three ligands seemed capable enough to elicit calcium signal and chemotaxis by binding to the same signaling receptor. In contrast, only CyPB enhanced firm adhesion of T cells to the extracellular matrix. This activity depended on the interactions with GAGs and signaling receptor. CyPB-mediated adhesion required CD147 presumably because it was a costimulatory molecule and was related to an activation of α4β1 and α4β7 integrins. Finally, we showed that CyPB was capable mainly to enhance T cell adhesion of the CD4+CD45RO+ subset. The present data indicate that CyPB rather than CyPA is a proinflammatory factor for T lymphocytes and highlight the crucial role of CyPB–GAG interaction in the chemokine-like activity of this protein.
Experimental Cell Research | 2009
Marie-Estelle Losfeld; Diala El Khoury; Pascal Mariot; Mathieu Carpentier; Bernard Krust; Jean-Paul Briand; Joël Mazurier; Ara G. Hovanessian; Dominique Legrand
Nucleolin is an ubiquitous nucleolar phosphoprotein involved in fundamental aspects of transcription regulation, cell proliferation and growth. It has also been described as a shuttling molecule between nucleus, cytosol and the cell surface. Several studies have demonstrated that surface nucleolin serves as a receptor for various extracellular ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. Previously, we reported that nucleolin in the extranuclear cell compartment is a glycoprotein containing N- and O-glycans. In the present study, we show that glycosylation is an essential requirement for surface nucleolin expression, since it is prevented when cells are cultured in the presence of tunicamycin, an inhibitor of N-glycosylation. Accordingly, surface but not nuclear nucleolin is radioactively labeled upon metabolic labeling of cells with [(3)H]glucosamine. Besides its well-demonstrated role in the internalization of specific ligands, here we show that ligand binding to surface nucleolin could also induce Ca(2+) entry into cells. Indeed, by flow cytometry, microscopy and patch-clamp experiments, we show that the HB-19 pseudopeptide, which binds specifically surface nucleolin, triggers rapid and intense membrane Ca(2+) fluxes in various types of cells. The use of several drugs then indicated that Store-Operated Ca(2+) Entry (SOCE)-like channels are involved in the generation of these fluxes. Taken together, our findings suggest that binding of an extracellular ligand to surface nucleolin could be involved in the activation of signaling pathways by promoting Ca(2+) entry into cells.
Journal of Biological Chemistry | 1999
Mathieu Carpentier; Fabrice Allain; Haendler B; Agnès Denys; Christophe Mariller; Monique Benaïssa; Geneviève Spik
Cyclophilin B is a cyclosporin A-binding protein exhibiting peptidyl-prolyl cis/trans isomerase activity. We have previously shown that it interacts with two types of binding sites on T lymphocytes. The type I sites correspond to specific functional receptors and the type II sites to sulfated glycosaminoglycans. The interactions of cyclophilin B with type I and type II sites are reduced in the presence of cyclosporin A and of a synthetic peptide mimicking the N-terminal part of cyclophilin B, respectively, suggesting that the protein possesses two distinct binding regions. In this study, we intended to characterize the areas of cyclophilin B involved in the interactions with binding sites present on Jurkat cells. The use of cyclophilin B mutants modified in the N-terminal region demonstrated that the 3Lys-Lys-Lys5 and14Tyr-Phe-Asp16 clusters are probably solely required for the interactions with the type II sites. We further engineered mutants of the conserved central core of cyclophilin B, which bears the catalytic and the cyclosporin A binding sites as an approach to localize the binding regions for the type I sites. The enzymatic activity of cyclophilin B was dramatically reduced after substitution of the Arg62 and Phe67residues, whereas the cyclosporin A binding activity was destroyed by mutation of the Trp128 residue and strongly decreased after modification of the Phe67 residue. Only the substitution of the Trp128 residue reduced the binding of the resulting cyclophilin B mutant to type I binding sites. The catalytic site of cyclophilin B therefore did not seem to be essential for cellular binding and the cyclosporin A binding site appeared to be partially involved in the binding to type I sites.
Journal of Immunology | 2012
Adeline Marcant; Agnès Denys; Aurélie Melchior; Pierre Martinez; Audrey Deligny; Mathieu Carpentier; Fabrice Allain
Extracellular cyclophilin A (CyPA) and CyPB have been well described as chemotactic factors for various leukocyte subsets, suggesting their contribution to inflammatory responses. Unlike CyPA, CyPB accumulates in extracellular matrixes, from which it is released by inflammatory proteases. Hence, we hypothesized that it could participate in tissue inflammation by regulating the activity of macrophages. In the current study, we confirmed that CyPB initiated in vitro migration of macrophages, but it did not induce production of proinflammatory cytokines. In contrast, pretreatment of macrophages with CyPB attenuated the expression of inflammatory mediators induced by LPS stimulation. The expression of TNF-α mRNA was strongly reduced after exposure to CyPB, but it was not accompanied by significant modification in LPS-induced activation of MAPK and NF-κB pathways. LPS activation of a reporter gene under the control of TNF-α gene promoter was also markedly decreased in cells treated with CyPB, suggesting a transcriptional mechanism of inhibition. Consistent with this hypothesis, we found that CyPB induced the expression of B cell lymphoma-3 (Bcl-3), which was accompanied by a decrease in the binding of NF-κB p65 to the TNF-α promoter. As expected, interfering with the expression of Bcl-3 restored cell responsiveness to LPS, thus confirming that CyPB acted by inhibiting initiation of TNF-α gene transcription. Finally, we found that CyPA was not efficient in attenuating the production of TNF-α from LPS-stimulated macrophages, which seemed to be due to a modest induction of Bcl-3 expression. Collectively, these findings suggest an unexpected role for CyPB in attenuation of the responses of proinflammatory macrophages.
PLOS ONE | 2012
Pierre Lebrun; Dominique Raze; Bernd Fritzinger; Jean-Michel Wieruszeski; Franck Biet; Alexander Dose; Mathieu Carpentier; Dirk Schwarzer; Fabrice Allain; Guy Lippens; Camille Locht
Background Tuberculosis remains one of the most important causes of global mortality and morbidity, and the molecular mechanisms of the pathogenesis are still incompletely understood. Only few virulence factors of the causative agent Mycobacterium tuberculosis are known. One of them is the heparin-binding haemagglutinin (HBHA), an important adhesin for epithelial cells and an extrapulmonary dissemination factor. HBHA mediates mycobacterial adherence to epithelial cells via the interactions of its C-terminal, lysine rich repeat domain with sulfated glycoconjugates on the surface of epithelial cells. Methodology/Principal Findings Using defined heparin sulfate (HS) analogs, we determined the minimal heparin fragment length for HBHA binding and structural adaptations of the HBHA heparin-binding domain (HBD) upon binding to heparin. The NMR studies show significant shifts of all residues in the HBD upon interaction with heparin, with stronger shifts in the last repeats compared to the upstream repeats, and indicated that the HS fragments with 14 sugar units cover the entire C-terminal lysine-rich domain of HBHA. The differential implication of the repeats is determined by the relative position of prolines and lysines within each repeat, and may contribute to binding specificity. GAG binding induces a non-homogeneous structural rearrangement in the HBD, with stabilization of a nascent α-helix only in the last penta-repeats. Conclusion/Significance Mycobacterial HBHA undergoes structural adaptation upon interaction with GAGs, which is likely involved in binding specificities of the adhesin, and mycobacterial pathogens may use HBD polymorphisms for host or organ specificity. Further studies will aim at decoding the complementarity between HBD repeats and HS sequence.
Glycobiology | 2015
Pierre Martinez; Agnès Denys; Maxime Delos; Anne-Sophie Sikora; Mathieu Carpentier; Sylvain Julien; Joël Pestel; Fabrice Allain
Macrophages are major cells of inflammatory process and take part in a large number of physiological and pathological processes. According to tissue environment, they can polarize into pro-inflammatory (M1) or alternative (M2) cells. Although many evidences have hinted to a potential role of cell-surface glycosaminoglycans (GAGs) in the functions of macrophages, the effect of M1 or M2 polarization on the biosynthesis of these polysaccharides has not been investigated so far. GAGs are composed of repeat sulfated disaccharide units. Heparan (HS) and chondroitin/dermatan sulfates (CS/DS) are the major GAGs expressed at the cell membrane. They are involved in numerous biological processes, which rely on their ability to selectively interact with a large panel of proteins. More than 20 genes encoding sulfotransferases have been implicated in HS and CS/DS biosynthesis, and the functional repertoire of HS and CS/DS has been related to the expression of these isoenzymes. In this study, we analyzed the expression of sulfotransferases as a response to macrophage polarization. We found that M1 and M2 activation drastically modified the profiles of expression of numerous HS and CS/DS sulfotransferases. This was accompanied by the expression of GAGs with distinct structural features. We then demonstrated that GAGs of M2 macrophages were efficient to present fibroblast growth factor-2 in an assay of tumor cell proliferation, thus indicating that changes in GAG structure may contribute to the functions of polarized macrophages. Altogether, our findings suggest a regulatory mechanism in which fine modifications in GAG biosynthesis may participate to the plasticity of macrophage functions.
FEBS Journal | 2011
Marie-Estelle Losfeld; Arnaud Leroy; Bernadette Coddeville; Mathieu Carpentier; Joël Mazurier; Dominique Legrand
Nucleolin is a major nucleolar protein involved in fundamental processes of ribosome biogenesis, regulation of cell proliferation and growth. Nucleolin is known to shuttle between nucleus, cytoplasm and cell surface. We have previously found that nucleolin undergoes complex N‐ and O‐glycosylations in extra‐nuclear isoforms. We found that surface nucleolin is exclusively glycosylated and that N‐glycosylation is required for its expression on the cells. Interestingly, the two N‐glycans are located in the RNA‐binding domains (RBDs) which participate in the self‐association properties of nucleolin. We hypothesized that the occupancy of RBDs by N‐glycans plays a role in these self‐association properties. Here, owing to the inability to quantitatively produce full‐size nucleolin, we expressed four N‐glycosylation nucleolin variants lacking the N‐terminal acidic domain in a baculovirus/insect cell system. As assessed by heptafluorobutyrate derivatization and mass spectrometry, this strategy allowed the production of proteins bearing or not paucimannosidic‐type glycans on either one or two of the potential N‐glycosylation sites. Their structure was investigated by circular dichroism and fluorimetry, and their ability to self‐interact was analyzed by electrophoresis and surface plasmon resonance. Our results demonstrate that all nucleolin‐derived variants are able to self‐interact and that N‐glycosylation on both RBD1 and RBD3, or RBD3 alone, but not RBD1 alone, modifies the structure of the N‐terminally truncated nucleolin and enhances its self‐association properties. In contrast, N‐glycosylation does not modify interaction with lactoferrin, a ligand of cell surface nucleolin. Our results suggest that the occupancy of the N‐glycosylation sites may contribute to expression and functions of surface nucleolin.
Biochemical Journal | 2004
Christophe Vanpouille; Agnès Denys; Mathieu Carpentier; Rachel Pakula; Joël Mazurier; Fabrice Allain
Cyclophilin B (CyPB) is a heparin-binding protein first identified as a receptor for cyclosporin A. In previous studies, we reported that CyPB triggers chemotaxis and integrin-mediated adhesion of T-lymphocytes by way of interaction with two types of binding sites. The first site corresponds to a signalling receptor; the second site has been identified as heparan sulphate (HS) and appears crucial to induce cell adhesion. Characterization of the HS-binding unit is critical to understand the requirement of HS in pro-adhesive activity of CyPB. By using a strategy based on gel mobility shift assays with fluorophore-labelled oligosaccharides, we demonstrated that the minimal heparin unit required for efficient binding of CyPB is an octasaccharide. The mutants CyPB(KKK-) [where KKK- refers to the substitutions K3A(Lys3-->Ala)/K4A/K5A] and CyPB(DeltaYFD) (where Tyr14-Phe-Asp16 has been deleted) failed to interact with octasaccharides, confirming that the Y14FD16 and K3KK5 clusters are required for CyPB binding. Molecular modelling revealed that both clusters are spatially arranged so that they may act synergistically to form a binding site for the octasaccharide. We then demonstrated that heparin-derived octasaccharides and higher degree of polymerization oligosaccharides inhibited the interaction between CyPB and fluorophore-labelled HS chains purified from T-lymphocytes, and strongly reduced the HS-dependent pro-adhesive activity of CyPB. However, oligosaccharides or heparin were unable to restore adhesion of heparinase-treated T-lymphocytes, indicating that HS has to be present on the cell membrane to support the pro-adhesive activity of CyPB. Altogether, these results demonstrate that the octasaccharide is likely to be the minimal length unit required for efficient binding of CyPB to cell surface HS and consequent HS-dependent cell responses.
Journal of Cellular Biochemistry | 2016
Anne-Sophie Sikora; Maxime Delos; Pierre Martinez; Mathieu Carpentier; Fabrice Allain; Agnès Denys
Heparan sulfate (HS) is recognized as an important player in a wide range of dynamic steps of inflammatory reactions. Thereby, structural HS remodeling is likely to play an important role in the regulation of inflammatory and immune responses; however, little is known about underlying mechanism. In this study, we analyzed the regulation of expression of HS 3‐O‐sulfotransferases (HS3STs) in response to inflammatory stimuli. We found that among the seven HS3ST isoenzymes, only the expression of HS3ST3B was markedly up‐regulated in human primary monocytes and the related cell line THP1 after exposure to TLR agonists. TNF‐α was also efficient, to a lesser extent, to increase HS3ST3B expression, while IL‐6, IL‐4, and IFN‐γ were poor inducers. We then analyzed the molecular mechanisms that regulate the high expression of HS3ST3B in response to LPS. Based on the expression of HS3ST3B transcripts and on the response of a reporter gene containing the HS3ST3B1 promoter, we provide evidence that LPS induces a rapid and strong transcription of HS3ST3B1 gene, which was mainly dependent on the activation of NF‐κB and JNK signaling pathways. Additionally, active p38 MAPK and de novo synthesized proteins are involved in post‐transcriptional mechanisms to maintain a high level of HS3ST3B mRNA to a steady state. Altogether, our findings indicate that HS3ST3B1 gene behaves as a primary response gene, suggesting that it may play an important role in making 3‐O‐sulfated HS with specific functions in the regulation of inflammatory and immune responses. J. Cell. Biochem. 117: 1529–1542, 2016.
Glycoconjugate Journal | 2014
Mathieu Carpentier; Agnès Denys; Fabrice Allain; Gérard Vergoten
Fibronectin is a major component of the extracellular matrix and serves as support for cell adhesion and migration. Heparin and heparan sulfates (HS) have been reported to be high-affinity ligands for fibronectin. The strongest heparin/HS-binding site, named Hep-II, is located in the C-terminal repeat units FN12-14 of fibronectin. Mutational studies of recombinant fibronectin fragments and elucidation of the X-ray crystallographic structure of Hep-II in complex with heparin allowed localizing the main heparin/HS-binding site in FN13 to two parallel amino acid clusters: R1697, R1698, R1700 and R1714, R1716, R1745. Heparin, which is more sulfated than HS, is a better ligand for fibronectin, indicating that the sulfate density is important for the interactions. However, other studies demonstrated that the position of sulfate groups is also critical for high-affinity binding of the polysaccharides to fibronectin. In the current work, we used molecular docking of Hep-II domain of fibronectin with a series of differently sulfated dodecasaccharides of heparin to determine the implication of each sulfate position in the interaction. By using this approach, we confirmed the implication of R1697, R1698, R1700 and R1714 and we identified other amino acids possibly involved in the interaction. We also confirmed a hierarchic involvement of sulfate position as follows: 2S >> 6S > NS. Interestingly, the formation of stable complexes required a mutual adaptation between Hep-II domain and oligosaccharides, which was different according to the pattern of sulfation. Finally, we demonstrated that 3-O-sulfation of heparin stabilized even more the complex with Hep-II by creating new molecular interactions. Collectively, our models point out the complexity of the molecular interactions between heparin/HS and fibronectin.