Mathieu Houde
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mathieu Houde.
Nature | 2003
Mathieu Houde; Sylvie Bertholet; Etienne Gagnon; Sylvain Brunet; Guillaume Goyette; Annie Laplante; Michael F. Princiotta; Pierre Thibault; David L. Sacks; Michel Desjardins
The ability to process microbial antigens and present them at the surface of cells is an important aspect of our innate ability to clear infections. It is generally accepted that antigens in the cytoplasm are loaded in the endoplasmic reticulum and presented at the cell surface on major histocompatibility complex (MHC) class I molecules, whereas peptides present in endo/phagocytic compartments are presented on MHC class II molecules. Despite the apparent segregation of the class I and class II pathways, antigens from intracellular pathogens including mycobacteria, Escherichia coli, Salmonella typhimurium, Brucella abortus and Leishmania, have been shown to elicit an MHC class-I-dependent CD8+ T-cell response, a process referred to as cross-presentation. The cellular mechanisms allowing the cross-presentation pathway are poorly understood. Here we show that phagosomes display the elements and properties needed to be self-sufficient for the cross-presentation of exogenous antigens, a newly ascribed function linked to phagocytosis mediated by the endoplasmic reticulum.
Journal of Immunology | 2006
Sylvie Bertholet; Romina S. Goldszmid; Alexandre Morrot; Alain Debrabant; Farhat Afrin; Carmen M. Collazo-Custodio; Mathieu Houde; Michel Desjardins; Alan Sher; David L. Sacks
CD8+ T cells are generated in response to Leishmania major (Lm) or Toxoplasma gondii parasitic infections, indicating that exogenously delivered Ag can be processed for presentation by MHC class I molecules. We show that presentation of Lm nucleotidase (NT)-OVA is TAP independent in vivo and in vitro, and is inhibited by chloroquine, but not by proteasome inhibitors. In contrast, the presentation of T. gondii P30-OVA relies on the TAP/proteasome pathway. Presentation of OVA- or rNT-OVA-coated beads also bypassed TAP requirement above a certain Ag threshold. TAP was also dispensable for the presentation of wild-type Lm Ags to primed CD8+ T cells in vitro. Finally, in vivo priming of CD8+ T cells involved in acquired resistance to Lm was not compromised in TAP-deficient mice. Thus, Leishmania Ags appear to be confined to an intraphagosomal processing pathway that requires higher concentrations of Ags, suggesting that these parasites may have evolved strategies to impair the efficient endoplasmic reticulum-based, TAP-dependent cross-presentation pathway to avoid or delay CD8+ T cell priming.
Immunological Reviews | 2005
Michel Desjardins; Mathieu Houde; Etienne Gagnon
Summary: Phagocytosis, the process by which cells internalize large particulate materials from their milieu and sequester them in phagosomes, plays a role in a variety of cell functions ranging from nutrition in ameba to innate and adaptive immunity in mammals. Recent findings revealed unexpected characteristics of phagosomes, highlighting how this complex organelle may have evolved, from Dictyostelium to human, to become a key player in our ability to mount an efficient immune response against a variety of intracellular pathogens.
Molecular & Cellular Proteomics | 2008
Isabelle Jutras; Mathieu Houde; Nathan Currier; Jonathan Boulais; Sophie Duclos; Sylvie Laboissiere; Eric Bonneil; Paul Kearney; Pierre Thibault; Eustache Paramithiotis; Patrice Hugo; Michel Desjardins
Macrophages are immune cells that function in the clearance of infectious particles. This process involves the engulfment of microbes into phagosomes where these particles are lysed and degraded. In the current study, we used a large scale quantitative proteomics approach to analyze the changes in protein abundance induced on phagosomes by interferon-γ (IFN-γ), an inflammatory cytokine that activates macrophages. Our analysis identified 167 IFN-γ-modulated proteins on phagosomes of which more than 90% were up-regulated. The list of phagosomal proteins regulated by IFN-γ includes proteins expected to alter phagosome maturation, enhance microbe degradation, trigger the macrophage immune response, and promote antigen loading on major histocompatibility complex (MHC) class I molecules. A dynamic analysis of IFN-γ-sensitive proteins by Western blot indicated that newly formed phagosomes display a delayed proteolytic activity coupled to an increased recruitment of the MHC class I peptide-loading complex. These phagosomal conditions may favor antigen presentation by MHC class I molecules on IFN-γ-activated macrophages.
The Journal of Infectious Diseases | 2011
Marie-Pier Lecours; Marcelo Gottschalk; Mathieu Houde; Paul Lemire; Nahuel Fittipaldi; Mariela Segura
Streptococcus suis is an emerging zoonotic agent of septicemia and meningitis. Knowledge on host immune responses toward S. suis and strategies used by this pathogen for subversion of these responses is scarce. Here, S. suis modulation of dendritic cell (DC) functions were assessed for the first time. Using S. suis knockout mutants in capsular polysaccharide (CPS) expression, it was shown that CPS blocks DC phagocytosis and impairs cytokine release by hindering cell wall components. Mutants impaired in D-alanylation of lipoteichoic acid (LTA) or N-deacetylation of peptidoglycan (PG) further demonstrated the importance of cell wall in modulation of DC activation. Notably, LTA/PG modifications were identified as major players in resistance to complement-dependent killing by DCs. Finally, S. suis hemolysin was partially involved in cytokine release and also contributed to bacterial escape of opsonophagocytosis. Overall, S. suis uses its arsenal of virulence factors to modulate DC functions and escape immune surveillance.
Cellular Microbiology | 2005
Jean-François Dermine; Guillaume Goyette; Mathieu Houde; Salvatore J. Turco; Michel Desjardins
Clearance of pathogens by phagocytosis and their killing in phagolysosomes is a key aspect of our innate ability to fight infectious agents. Leishmania parasites have evolved ways to survive and replicate in macrophages by inhibiting phagosome maturation and avoiding the harsh environment of phagolysosomes. We describe here that during this process Leishmania donovani uses a novel strategy involving its surface lipophosphoglycan (LPG), a virulence factor impeding many host functions, to prevent the formation or disrupt lipid microdomains on the phagosome membrane. LPG acts locally on the membrane and requires its repetitive carbohydrate moieties to alter the organization of microdomains. Targeting and disruption of functional foci, where proteins involved in key aspects of phagolysosome biogenesis assemble, is likely to confer a survival advantage to the parasite.
Infection and Immunity | 2012
Mathieu Houde; Marcelo Gottschalk; Fleur Gagnon; Marie-Rose Van Calsteren; Mariela Segura
ABSTRACT Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes.
Infection and Immunity | 2010
María de la Cruz Domínguez-Punaro; Mariela Segura; Irazú Contreras; Claude Lachance; Mathieu Houde; Marie-Pier Lecours; Martin Olivier; Marcelo Gottschalk
ABSTRACT Streptococcus suis is an important swine and human pathogen responsible for septicemia and meningitis. In vivo research in mice suggested that in the brain, microglia might be involved in activating the inflammatory response against S. suis. The aim of this study was to better understand the interactions between S. suis and microglia. Murine microglial cells were infected with a virulent wild-type strain of S. suis. Two isogenic mutants deficient at either capsular polysaccharide (CPS) or hemolysin production were also included. CPS contributed to S. suis resistance to phagocytosis and regulated the inflammatory response by hiding proinflammatory components from the bacterial cell wall, while the absence of hemolysin, a potential cytotoxic factor, did not have a major impact on S. suis interactions with microglia. Wild-type S. suis induced enhanced expression of Toll-like receptor 2 by microglial cells, as well as phophotyrosine, protein kinase C, and different mitogen-activated protein kinase signaling events. However, cells infected with the CPS-deficient mutant showed overall stronger and more sustained phosphorylation profiles. CPS also modulated inducible nitric oxide synthase expression and further nitric oxide production from S. suis-infected microglia. Finally, S. suis-induced NF-κB translocation was faster for cells stimulated with the CPS-deficient mutant, suggesting that bacterial cell wall components are potent inducers of NF-κB. These results contribute to increase the knowledge of mechanisms underlying S. suis inflammation in the brain and will be useful in designing more efficient anti-inflammatory strategies for meningitis.
Microbes and Infection | 2012
Paul Lemire; Mathieu Houde; Marie-Pier Lecours; Nahuel Fittipaldi; Mariela Segura
Group B Streptococcus (GBS) type III is an important agent of life-threatening invasive infections. Albeit the immune system plays a dual role in development and protection against disease, mechanisms leading to an efficient immune response against GBS remain obscure. Mouse bone marrow-derived dendritic cells (DCs) and primary spleen DCs were used to evaluate GBS capacity to modulate the functions of these important antigen-presenting cells. The role of capsular polysaccharide (CPS), one of the most important GBS virulence factors, in bacterial-DC interactions was evaluated by using a non-encapsulated mutant. Phagocytosis assays, confocal and electron microscopy showed that DCs efficiently internalize encapsulated GBS, but the latter possesses strong intracellular survival capacity. GBS devoid of CPS was internalized and killed at higher and faster rates than encapsulated GBS early after infection. Among several cytokines tested, GBS internalization was required for modulation of IL-12, IL-10 and CXCL10 pathways. In contrast, GBS induced DC expression of co-stimulatory molecules in a phagocytosis-independent manner. Finally, the production of pro-inflammatory and Th1 cytokines by GBS-stimulated DCs was differentially modulated by CPS expression, depending on DC origin. Our data suggest multiple mechanisms involved in GBS modulation of DC functions, which were selectively regulated by the presence of CPS.
Journal of Neuroimmunology | 2011
Han Zheng; María C. Domínguez Punaro; Mariela Segura; Claude Lachance; Serge Rivest; Jianguo Xu; Mathieu Houde; Marcelo Gottschalk
The murine astrocyte response to virulent Streptococcus suis, a swine and an emerging human meningitis-causing pathogen, is reported. Albeit astrocytes do not internalize S. suis, all S. suis strains studied enhanced Toll-like receptor (TLR)2 expression and the production of pro-inflammatory cytokines and inducible nitric oxide synthase. Cell wall components and hemolysin (suilysin) are shown to be mainly responsible for cell activation. Astrocytes from TLR2 knockout mice presented a partial but significant reduction of S. suis-induced production of pro-inflammatory cytokines. These results contribute to increase the knowledge on mechanisms underlying S. suis inflammation in the brain.