Nahuel Fittipaldi
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nahuel Fittipaldi.
Mbio | 2016
Stephen B. Beres; Priyanka Kachroo; Waleed Nasser; Randall J. Olsen; Luchang Zhu; Anthony R. Flores; Ivan de la Riva; Jesus Paez-Mayorga; Francisco E. Jimenez; Concepcion Cantu; Jaana Vuopio; Jari Jalava; Karl G. Kristinsson; Magnus Gottfredsson; Jukka Corander; Nahuel Fittipaldi; Maria Chiara Di Luca; Dezemona Petrelli; Luca Agostino Vitali; Annessa Raiford; Leslie Jenkins; James M. Musser
ABSTRACT For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. IMPORTANCE The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Anthony R. Flores; Jessica Galloway-Peña; Pranoti Sahasrabhojane; Miguel Saldaña; Hui Yao; Xiaoping Su; Nadim J. Ajami; Michael Holder; Joseph F. Petrosino; Erika Thompson; Immaculada Margarit Y Ros; Roberto Rosini; Guido Grandi; Nicola Horstmann; Sarah Teatero; Allison McGeer; Nahuel Fittipaldi; Rino Rappuoli; Carol J. Baker; Samuel A. Shelburne
Significance Serotype V group B Streptococcus (GBS) infection rates in humans have steadily increased during the past several decades. We determined that 92% of bloodstream infections caused by serotype V GBS in Houston and Toronto are caused by genetically related strains called sequence type (ST) 1. Whole-genome analysis of 202 serotype V ST-1 strains revealed the molecular relationship among these strains and that they are closely related to a bovine strain. Moreover, we found that a subset of GBS genes is under selective evolutionary pressure, indicating that proteins produced by these genes likely contribute to GBS host–pathogen interaction. These data will assist in understanding how bacteria adapt to cause disease in humans, thereby potentially informing new preventive and therapeutic strategies. The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.
Trends in Microbiology | 2017
Mariela Segura; Nahuel Fittipaldi; Cynthia Calzas; Marcelo Gottschalk
Streptococcus suis is an important swine pathogen that can be transmitted to humans by contact with diseased animals or contaminated raw pork products. This pathogen possesses a coat of capsular polysaccharide (CPS) that confers protection against the immune system. Yet, the CPS is not the only virulence factor enabling this bacterium to successfully colonize, invade, and disseminate in its host leading to severe systemic diseases such as meningitis and toxic shock-like syndrome. Indeed, recent research developments, cautiously inventoried in this review, have revealed over 100 putative virulence factors or traits (surface-associated or secreted components, regulatory genes or metabolic pathways), of which at least 37 have been claimed as being critical for virulence. In this review we discuss the current contradictions and controversies raised by this explosion of virulence factors and the future directions that may be conceived to advance and enlighten research on S. suis pathogenesis.
The Journal of Pediatrics | 2015
Daniel Tibussek; Adriane Sinclair; Ivanna Yau; Sarah Teatero; Nahuel Fittipaldi; Susan E. Richardson; Ertan Mayatepek; Peter Jahn; Rand Askalan
OBJECTIVEnTo describe cerebrovascular diseases related to late-onset group B Streptococcus (GBS) meningitis.nnnSTUDY DESIGNnRetrospective case series. Patients treated for cerebrovascular complication of late-onset GBS meningitis over 5xa0years were identified through neuroradiology and microbiology databases. Patient charts were reviewed with regard to clinical presentation, laboratory findings, including GBS subtype, treatment, clinical course, and outcome. Cerebral magnetic resonance imaging was reviewed with special emphasis on stroke pattern and cerebrovascular findings.nnnRESULTSnFourteen patients were identified. In 6 out of 9 patients serotype III was causative and positive for surface protein hvgA in 5. Ten had arterial ischemic stroke accompanied by a cerebral sinovenous thrombosis in 2 patients. Evidence of cerebral vasculopathy was found in 4 cases. The stroke pattern was variable with cortical, multifocal ischemia, basal ganglia involvement, or had a clear territorial arterial infarction. Ten patients were treated with anticoagulation. No significant bleeding complications, and no recurrent strokes occurred. Twelve patients had clinical and/or subclinical seizures. Developmental outcome was good in 8 cases. Six patients had moderate to severe developmental delay. Central nervous system complications included subdural empyema, hydrocephalus, epilepsy, microcephaly, and hemiplegia.nnnCONCLUSIONSnLate-onset GBS meningitis can be complicated by severe cerebrovascular disease, including arterial ischemic stroke and cerebral sinovenous thrombosis. These complications may be underestimated. We recommend a low threshold for cerebral imaging in these cases. Future studies on the exact incidence, the role of GBS subtypes, and on safety and efficiency of preventive anticoagulation therapy are warranted.
Journal of Clinical Microbiology | 2014
Taryn B. T. Athey; Sarah Teatero; Aimin Li; Alex Marchand-Austin; Bernard Beall; Nahuel Fittipaldi
ABSTRACT Typing of group A Streptococcus (GAS) is crucial for infection control and epidemiology. While whole-genome sequencing (WGS) is revolutionizing the way that bacterial organisms are typed, it is necessary to provide backward compatibility with currently used typing schemas to facilitate comparisons and understanding of epidemiological trends. Here, we sequenced the genomes of 191 GAS isolates representing 42 different emm types and used bioinformatics tools to derive commonly used GAS typing information directly from the short-read WGS data. We show that emm typing and multilocus sequence typing can be achieved rapidly and efficiently using this approach, which also permits the determination of the presence or absence of genes associated with GAS tissue tropism. We also report on how the WGS data analysis was instrumental in identifying ambiguities present in the commonly used emm type database hosted by the U.S. Centers for Disease Control and Prevention.
Journal of Clinical Microbiology | 2016
Taryn B. T. Athey; Sarah Teatero; Lee E. Sieswerda; Jonathan B. Gubbay; Alex Marchand-Austin; Aimin Li; Jessica Wasserscheid; Ken Dewar; Allison McGeer; David Wynne Williams; Nahuel Fittipaldi
ABSTRACT An outbreak of type emm59 invasive group A Streptococcus (iGAS) disease was declared in 2008 in Thunder Bay District, Northwestern Ontario, 2 years after a countrywide emm59 epidemic was recognized in Canada. Despite a declining number of emm59 infections since 2010, numerous cases of iGAS disease continue to be reported in the area. We collected clinical information on all iGAS cases recorded in Thunder Bay District from 2008 to 2013. We also emm typed and sequenced the genomes of all available strains isolated from 2011 to 2013 from iGAS infections and from severe cases of soft tissue infections. We used whole-genome sequencing data to investigate the population structure of GAS strains of the most frequently isolated emm types. We report an increased incidence of iGAS in Thunder Bay compared to the metropolitan area of Toronto/Peel and the province of Ontario. Illicit drug use, alcohol abuse, homelessness, and hepatitis C infection were underlying diseases or conditions that might have predisposed patients to iGAS disease. Most cases were caused by clonal strains of skin or generalist emm types (i.e., emm82, emm87, emm101, emm4, emm83, and emm114) uncommonly seen in other areas of the province. We observed rapid waxing and waning of emm types causing disease and their replacement by other emm types associated with the same tissue tropisms. Thus, iGAS disease in Thunder Bay District predominantly affects a select population of disadvantaged persons and is caused by clonally related strains of a few skin and generalist emm types less commonly associated with iGAS in other areas of Ontario.
Infection and Immunity | 2014
Anthony R. Flores; Brittany E. Jewell; Randall J. Olsen; Samuel A. Shelburne; Nahuel Fittipaldi; Stephen B. Beres; James M. Musser
ABSTRACT Humans commonly carry pathogenic bacteria asymptomatically, but despite decades of study, the underlying molecular contributors remain poorly understood. Here, we show that a group A streptococcus carriage strain contains a frameshift mutation in the hasA gene resulting in loss of hyaluronic acid capsule biosynthesis. This mutation was repaired by allelic replacement, resulting in restoration of capsule production in the isogenic derivative strain. The “repaired” isogenic strain was significantly more virulent than the carriage strain in a mouse model of necrotizing fasciitis and had enhanced growth ex vivo in human blood. Importantly, the repaired isogenic strain colonized the mouse oropharynx with significantly greater bacterial burden and had significantly reduced ability to internalize into cultured epithelial cells than the acapsular carriage strain. We conducted full-genome sequencing of 81 strains cultured serially from 19 epidemiologically unrelated human subjects and discovered the common theme that mutations negatively affecting capsule biosynthesis arise in vivo in the has operon. The significantly decreased capsule production is a key factor contributing to the molecular détente between pathogen and host. Our discoveries suggest a general model for bacterial pathogens in which mutations that downregulate or ablate virulence factor production contribute to carriage.
Journal of Clinical Microbiology | 2014
Randall J. Olsen; Nahuel Fittipaldi; Priyanka Kachroo; Misu Sanson; S. Wesley Long; Kathryn Como-Sabetti; Chandni Valson; Concepcion Cantu; Ruth Lynfield; Chris A. Van Beneden; Stephen B. Beres; James M. Musser
ABSTRACT Large hospital-based clinical laboratories must be prepared to rapidly investigate potential infectious disease outbreaks. To challenge the ability of our molecular diagnostics laboratory to use whole-genome sequencing in a potential outbreak scenario and identify impediments to these efforts, we studied 84 invasive serotype emm59 group A streptococcus (GAS) strains collected in the United States. We performed a rapid-response exercise to the mock outbreak scenario using whole-genome sequencing, genome-wide transcript analysis, and mouse virulence studies. The protocol changes installed in response to the lessons learned were tested in a second iteration. The initial investigation was completed in 9 days. Whole-genome sequencing showed that the invasive infections were caused by multiple subclones of epidemic emm59 GAS strains likely spread to the United States from Canada. The phylogenetic tree showed a strong temporal-spatial structure with diversity in mobile genetic element content, features that are useful for identifying closely related strains and possible transmission events. The genome data informed the epidemiology, identifying multiple patients who likely acquired the organisms through direct person-to-person transmission. Transcriptome analysis unexpectedly revealed significantly altered expression of genes encoding a two-component regulator and the hyaluronic acid capsule virulence factor. Mouse infection studies confirmed a high-virulence capacity of these emm59 organisms. Whole-genome sequencing, coupled with transcriptome analysis and animal virulence studies, can be rapidly performed in a clinical environment to effectively contribute to patient care decisions and public health maneuvers.
Emerging Infectious Diseases | 2014
Christopher C. Brown; Randall J. Olsen; Nahuel Fittipaldi; Monica Morman; Peter L. Fort; Robert Neuwirth; Mohammed Majeed; William B. Woodward; James M. Musser
Full-genome sequencing showed that a recently emerged and hypervirulent clone of group A Streptococcus type emm59 active in Canada and parts of the United States has now caused severe invasive infections in rural northeastern Wyoming. Phylogenetic analysis of genome data indicated that the strain was likely introduced from Montana.
Journal of Clinical Microbiology | 2015
Sarah Teatero; Taryn B. T. Athey; Paul Van Caeseele; Greg Horsman; David C. Alexander; Roberto G. Melano; Aimin Li; Anthony R. Flores; Samuel A. Shelburne; Allison McGeer; Walter Demczuk; Irene Martin; Nahuel Fittipaldi
ABSTRACT Serotype IV group B Streptococcus (GBS) is emerging in Canada and the United States with rates as high as 5% of the total burden of adult invasive GBS disease. To understand this emergence, we studied the population structure and assessed the antimicrobial susceptibility of serotype IV isolates causing adult invasive infection in Manitoba and Saskatchewan, Canada, between 2010 and 2014. Whole-genome sequencing was used to determine multilocus sequence typing information and identify genes encoding antimicrobial resistance in 85 invasive serotype IV GBS strains. Antimicrobial susceptibility testing was performed by standard methods. Strain divergence was assessed using genome-wide single-nucleotide polymorphism analysis. Serotype IV strains were responsible for 16.9% of adult invasive GBS infections in Manitoba and Saskatchewan during the period. The majority of serotype IV isolates (89%) were clonally related, tetracycline-, erythromycin-, and clindamycin-resistant sequence type 459 (ST459) strains that possessed genes tetM and ermTR. Genome comparisons between ST459 and serotype V ST1 GBS identified several areas of recombination in an overall similar genomic background. Serotype IV ST459 GBS strains are expanding and causing a substantial percentage of adult invasive GBS disease. This emergence may be linked to the acquisition of resistance to tetracycline, macrolides, and lincosamides.