Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathieu Lemire is active.

Publication


Featured researches published by Mathieu Lemire.


Epigenetics | 2013

Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray

Yi-an Chen; Mathieu Lemire; Sanaa Choufani; Darci T. Butcher; Daria Grafodatskaya; Brent W. Zanke; Steven Gallinger; Thomas J. Hudson; Rosanna Weksberg

DNA methylation, an important type of epigenetic modification in humans, participates in crucial cellular processes, such as embryonic development, X-inactivation, genomic imprinting and chromosome stability. Several platforms have been developed to study genome-wide DNA methylation. Many investigators in the field have chosen the Illumina Infinium HumanMethylation microarray for its ability to reliably assess DNA methylation following sodium bisulfite conversion. Here, we analyzed methylation profiles of 489 adult males and 357 adult females generated by the Infinium HumanMethylation450 microarray. Among the autosomal CpG sites that displayed significant methylation differences between the two sexes, we observed a significant enrichment of cross-reactive probes co-hybridizing to the sex chromosomes with more than 94% sequence identity. This could lead investigators to mistakenly infer the existence of significant autosomal sex-associated methylation. Using sequence identity cutoffs derived from the sex methylation analysis, we concluded that 6% of the array probes can potentially generate spurious signals because of co-hybridization to alternate genomic sequences highly homologous to the intended targets. Additionally, we discovered probes targeting polymorphic CpGs that overlapped SNPs. The methylation levels detected by these probes are simply the reflection of underlying genetic polymorphisms but could be misinterpreted as true signals. The existence of probes that are cross-reactive or of target polymorphic CpGs in the Illumina HumanMethylation microarrays can confound data obtained from such microarrays. Therefore, investigators should exercise caution when significant biological associations are found using these array platforms. A list of all cross-reactive probes and polymorphic CpGs identified by us are annotated in this paper.


Nature Genetics | 2009

Common variants in the NLRP3 region contribute to Crohn's disease susceptibility

Alexandra-Chloé Villani; Mathieu Lemire; Geneviève Fortin; Edouard Louis; Mark S. Silverberg; Catherine Collette; Nobuyasu Baba; Cécile Libioulle; Jacques Belaiche; Alain Bitton; Daniel Gaudet; Albert Cohen; Diane Langelier; Paul R. Fortin; Joan Wither; Marika Sarfati; Paul Rutgeerts; John D. Rioux; Severine Vermeire; Thomas J. Hudson; Denis Franchimont

We used a candidate gene approach to identify a set of SNPs, located in a predicted regulatory region on chromosome 1q44 downstream of NLRP3 (previously known as CIAS1 and NALP3) that are associated with Crohns disease. The associations were consistently replicated in four sample sets from individuals of European descent. In the combined analysis of all samples (710 father-mother-child trios, 239 cases and 107 controls), these SNPs were strongly associated with risk of Crohns disease (Pcombined = 3.49 × 10−9, odds ratio = 1.78, confidence interval = 1.47–2.16 for rs10733113), reaching a level consistent with the stringent significance thresholds imposed by whole-genome association studies. In addition, we observed significant associations between SNPs in the associated regions and NLRP3 expression and IL-1β production. Mutations in NLRP3 are known to be responsible for three rare autoinflammatory disorders. These results suggest that the NLRP3 region is also implicated in the susceptibility of more common inflammatory diseases such as Crohns disease.


Gastroenterology | 2010

Genetic Risk Factors for Post-Infectious Irritable Bowel Syndrome Following a Waterborne Outbreak of Gastroenteritis

Alexandra-Chloé Villani; Mathieu Lemire; Marroon Thabane; Alexandre Belisle; Geneviève Geneau; Amit X. Garg; William F. Clark; Paul Moayyedi; Stephen M. Collins; Denis Franchimont; John K. Marshall

BACKGROUND & AIMS Acute gastroenteritis is the strongest risk factor for irritable bowel syndrome (IBS). In May 2000, >2300 residents of Walkerton, Ontario, developed gastroenteritis from microbial contamination of the municipal water supply; a longitudinal study found that >36.2% of these developed IBS. We used this cohort to study genetic susceptibility to post-infectious (PI)-IBS. METHODS We screened 79 functional variants of genes with products involved in serotoninergic pathways, intestinal epithelial barrier function, and innate immunity and performed fine mapping in regions of interest. We compared data from Walkerton residents who developed gastroenteritis and reported PI-IBS 2 to 3 years after the outbreak (n = 228, cases) with data from residents who developed gastroenteritis but did not develop PI-IBS (n = 581, controls). RESULTS Four variants were associated with PI-IBS, although the association was not significant after correction for the total number of single nucleotide polymorphisms. Two were located in TLR9, which encodes a pattern recognition receptor (rs352139, P545P; P = .0059 and rs5743836, -T1237C; P = .0250; r(2) < 0.14); 1 was in CDH1, which encodes a tight junction protein (rs16260, -C160A; P = .0352); and 1 was in IL6, which encodes a cytokine (rs1800795, -G174C; P = .0420). Denser mapping of these 3 regions revealed 1 novel association in IL6 (rs2069861; P = .0069) and 14 associations that could be accounted for by linkage disequilibrium with the 4 original variants. The TLR9, IL6, and CDH1 variants all persisted as independent risk factors for PI-IBS when controlling for previously identified clinical risk factors. CONCLUSION This is the first descriptive study to assess potential genetic determinants of PI-IBS. Genes that encode proteins involved in epithelial cell barrier function and the innate immune response to enteric bacteria are associated with development of IBS following acute gastroenteritis.


Gastroenterology | 2013

Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis

Ulrike Peters; Fredrick R. Schumacher; Carolyn M. Hutter; Aaron K. Aragaki; John A. Baron; Sonja I. Berndt; Stéphane Bézieau; Hermann Brenner; Katja Butterbach; Bette J. Caan; Peter T. Campbell; Christopher S. Carlson; Graham Casey; Andrew T. Chan; Jenny Chang-Claude; Stephen J. Chanock; Lin Chen; Gerhard A. Coetzee; Simon G. Coetzee; David V. Conti; Keith R. Curtis; David Duggan; Todd L. Edwards; Charles S. Fuchs; Steven Gallinger; Edward Giovannucci; Stephanie M. Gogarten; Stephen B. Gruber; Robert W. Haile; Tabitha A. Harrison

BACKGROUND & AIMS Heritable factors contribute to the development of colorectal cancer. Identifying the genetic loci associated with colorectal tumor formation could elucidate the mechanisms of pathogenesis. METHODS We conducted a genome-wide association study that included 14 studies, 12,696 cases of colorectal tumors (11,870 cancer, 826 adenoma), and 15,113 controls of European descent. The 10 most statistically significant, previously unreported findings were followed up in 6 studies; these included 3056 colorectal tumor cases (2098 cancer, 958 adenoma) and 6658 controls of European and Asian descent. RESULTS Based on the combined analysis, we identified a locus that reached the conventional genome-wide significance level at less than 5.0 × 10(-8): an intergenic region on chromosome 2q32.3, close to nucleic acid binding protein 1 (most significant single nucleotide polymorphism: rs11903757; odds ratio [OR], 1.15 per risk allele; P = 3.7 × 10(-8)). We also found evidence for 3 additional loci with P values less than 5.0 × 10(-7): a locus within the laminin gamma 1 gene on chromosome 1q25.3 (rs10911251; OR, 1.10 per risk allele; P = 9.5 × 10(-8)), a locus within the cyclin D2 gene on chromosome 12p13.32 (rs3217810 per risk allele; OR, 0.84; P = 5.9 × 10(-8)), and a locus in the T-box 3 gene on chromosome 12q24.21 (rs59336; OR, 0.91 per risk allele; P = 3.7 × 10(-7)). CONCLUSIONS In a large genome-wide association study, we associated polymorphisms close to nucleic acid binding protein 1 (which encodes a DNA-binding protein involved in DNA repair) with colorectal tumor risk. We also provided evidence for an association between colorectal tumor risk and polymorphisms in laminin gamma 1 (this is the second gene in the laminin family to be associated with colorectal cancers), cyclin D2 (which encodes for cyclin D2), and T-box 3 (which encodes a T-box transcription factor and is a target of Wnt signaling to β-catenin). The roles of these genes and their products in cancer pathogenesis warrant further investigation.


Genome Biology | 2014

Functional normalization of 450k methylation array data improves replication in large cancer studies

Jean Philippe Fortin; Aurelie Labbe; Mathieu Lemire; Brent W. Zanke; Thomas J. Hudson; Elana Fertig; Celia M. T. Greenwood; Kasper D. Hansen

We propose an extension to quantile normalization that removes unwanted technical variation using control probes. We adapt our algorithm, functional normalization, to the Illumina 450k methylation array and address the open problem of normalizing methylation data with global epigenetic changes, such as human cancers. Using data sets from The Cancer Genome Atlas and a large case–control study, we show that our algorithm outperforms all existing normalization methods with respect to replication of results between experiments, and yields robust results even in the presence of batch effects. Functional normalization can be applied to any microarray platform, provided suitable control probes are available.


Respiratory Research | 2009

Asthma and genes encoding components of the vitamin D pathway

Yohan Bossé; Mathieu Lemire; Audrey Poon; Denise Daley; Jian Qing He; Andrew J. Sandford; John H. White; Alan James; Arthur W. Musk; Lyle J. Palmer; Benjamin A. Raby; Scott T. Weiss; Anita L. Kozyrskyj; Allan B. Becker; Thomas J. Hudson; Catherine Laprise

BackgroundGenetic variants at the vitamin D receptor (VDR) locus are associated with asthma and atopy. We hypothesized that polymorphisms in other genes of the vitamin D pathway are associated with asthma or atopy.MethodsEleven candidate genes were chosen for this study, five of which code for proteins in the vitamin D metabolism pathway (CYP27A1, CYP27B1, CYP2R1, CYP24A1, GC) and six that are known to be transcriptionally regulated by vitamin D (IL10, IL1RL1, CD28, CD86, IL8, SKIIP). For each gene, we selected a maximally informative set of common SNPs (tagSNPs) using the European-derived (CEU) HapMap dataset. A total of 87 SNPs were genotyped in a French-Canadian family sample ascertained through asthmatic probands (388 nuclear families, 1064 individuals) and evaluated using the Family Based Association Test (FBAT) program. We then sought to replicate the positive findings in four independent samples: two from Western Canada, one from Australia and one from the USA (CAMP).ResultsA number of SNPs in the IL10, CYP24A1, CYP2R1, IL1RL1 and CD86 genes were modestly associated with asthma and atopy (p < 0.05). Two-gene models testing for both main effects and the interaction were then performed using conditional logistic regression. Two-gene models implicating functional variants in the IL10 and VDR genes as well as in the IL10 and IL1RL1 genes were associated with asthma (p < 0.0002). In the replicate samples, SNPs in the IL10 and CYP24A1 genes were again modestly associated with asthma and atopy (p < 0.05). However, the SNPs or the orientation of the risk alleles were different between populations. A two-gene model involving IL10 and VDR was replicated in CAMP, but not in the other populations.ConclusionA number of genes involved in the vitamin D pathway demonstrate modest levels of association with asthma and atopy. Multilocus models testing genes in the same pathway are potentially more effective to evaluate the risk of asthma, but the effects are not uniform across populations.


Nature | 2016

A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns.

Faiyaz Notta; Michelle Chan-Seng-Yue; Mathieu Lemire; Yilong Li; Gavin Wilson; Ashton A. Connor; Robert E. Denroche; Sheng Ben Liang; Andrew M.K. Brown; Jaeseung C. Kim; Tao Wang; Jared T. Simpson; Timothy Beck; Ayelet Borgida; Nicholas Buchner; Dianne Chadwick; Sara Hafezi-Bakhtiari; John E. Dick; Lawrence E. Heisler; Michael A. Hollingsworth; Emin Ibrahimov; Gun Ho Jang; Jeremy Johns; Lars G T Jorgensen; Calvin Law; Olga Ludkovski; Ilinca Lungu; Karen Ng; Danielle Pasternack; Gloria M. Petersen

Pancreatic cancer, a highly aggressive tumour type with uniformly poor prognosis, exemplifies the classically held view of stepwise cancer development. The current model of tumorigenesis, based on analyses of precursor lesions, termed pancreatic intraepithelial neoplasm (PanINs) lesions, makes two predictions: first, that pancreatic cancer develops through a particular sequence of genetic alterations (KRAS, followed by CDKN2A, then TP53 and SMAD4); and second, that the evolutionary trajectory of pancreatic cancer progression is gradual because each alteration is acquired independently. A shortcoming of this model is that clonally expanded precursor lesions do not always belong to the tumour lineage, indicating that the evolutionary trajectory of the tumour lineage and precursor lesions can be divergent. This prevailing model of tumorigenesis has contributed to the clinical notion that pancreatic cancer evolves slowly and presents at a late stage. However, the propensity for this disease to rapidly metastasize and the inability to improve patient outcomes, despite efforts aimed at early detection, suggest that pancreatic cancer progression is not gradual. Here, using newly developed informatics tools, we tracked changes in DNA copy number and their associated rearrangements in tumour-enriched genomes and found that pancreatic cancer tumorigenesis is neither gradual nor follows the accepted mutation order. Two-thirds of tumours harbour complex rearrangement patterns associated with mitotic errors, consistent with punctuated equilibrium as the principal evolutionary trajectory. In a subset of cases, the consequence of such errors is the simultaneous, rather than sequential, knockout of canonical preneoplastic genetic drivers that are likely to set-off invasive cancer growth. These findings challenge the current progression model of pancreatic cancer and provide insights into the mutational processes that give rise to these aggressive tumours.


Nature Biotechnology | 2016

Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases

Rong Chen; Lisong Shi; Jörg Hakenberg; Brian Thomas Naughton; Pamela Sklar; Jianguo Zhang; Hanlin Zhou; Lifeng Tian; Om Prakash; Mathieu Lemire; Patrick Sleiman; Wei-Yi Cheng; Wanting Chen; Hardik Shah; Yulan Shen; Menachem Fromer; Larsson Omberg; Matthew A. Deardorff; Elaine H. Zackai; Jason Bobe; Elissa Levin; Thomas J. Hudson; Leif Groop; Jun Wang; Hakon Hakonarson; Anne Wojcicki; George A. Diaz; Lisa Edelmann; Eric E. Schadt; Stephen H. Friend

Genetic studies of human disease have traditionally focused on the detection of disease-causing mutations in afflicted individuals. Here we describe a complementary approach that seeks to identify healthy individuals resilient to highly penetrant forms of genetic childhood disorders. A comprehensive screen of 874 genes in 589,306 genomes led to the identification of 13 adults harboring mutations for 8 severe Mendelian conditions, with no reported clinical manifestation of the indicated disease. Our findings demonstrate the promise of broadening genetic studies to systematically search for well individuals who are buffering the effects of rare, highly penetrant, deleterious mutations. They also indicate that incomplete penetrance for Mendelian diseases is likely more common than previously believed. The identification of resilient individuals may provide a first step toward uncovering protective genetic variants that could help elucidate the mechanisms of Mendelian diseases and new therapeutic strategies.


Journal of The American Society of Nephrology | 2008

A Common RET Variant Is Associated with Reduced Newborn Kidney Size and Function

Zhao Zhang; Jackie Quinlan; Wendy E. Hoy; Michael D. Hughson; Mathieu Lemire; Thomas J. Hudson; Pierre-Alain Hueber; Alice Benjamin; Anne Roy; Elena Pascuet; Meigan Goodyer; Chandhana Raju; Fiona Houghton; John F. Bertram; Paul Goodyer

Congenital nephron number varies five-fold among normal humans, and individuals at the lower end of this range may have an increased lifetime risk for essential hypertension or renal insufficiency; however, the mechanisms that determine nephron number are unknown. This study tested the hypothesis that common hypomorphic variants of the RET gene, which encodes a tyrosine kinase receptor critical for renal branching morphogenesis, might account for subtle renal hypoplasia in some normal newborns. A common single-nucleotide polymorphism (rs1800860 G/A) was identified within an exonic splicing enhancer in exon 7. The adenosine variant at mRNA position 1476 reduced affinity for spliceosome proteins, enhanced the likelihood of aberrant mRNA splicing, and diminished the level of functional transcript in human cells. In vivo, normal white newborns with an rs1800860(1476A) allele had kidney volumes 10% smaller and cord blood cystatin C levels 9% higher than those with the rs1800860(1476G) allele. These findings suggest that the RET(1476A) allele, in combination with other common polymorphic developmental genes, may account for subtle renal hypoplasia in a significant proportion of the white population. Whether this gene variant affects clinical outcomes requires further study.


JAMA | 2015

Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants

Hongmei Nan; Carolyn M. Hutter; Yi Lin; Eric J. Jacobs; Cornelia M. Ulrich; Emily White; John A. Baron; Sonja I. Berndt; Hermann Brenner; Katja Butterbach; Bette J. Caan; Peter T. Campbell; Christopher S. Carlson; Graham Casey; Jenny Chang-Claude; Stephen J. Chanock; Michelle Cotterchio; David Duggan; Jane C. Figueiredo; Charles S. Fuchs; Edward Giovannucci; Jian Gong; Robert W. Haile; Tabitha A. Harrison; Richard B. Hayes; Michael Hoffmeister; John L. Hopper; Thomas J. Hudson; Mark A. Jenkins; Noralane M. Lindor

IMPORTANCE Use of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with lower risk of colorectal cancer. OBJECTIVE To identify common genetic markers that may confer differential benefit from aspirin or NSAID chemoprevention, we tested gene × environment interactions between regular use of aspirin and/or NSAIDs and single-nucleotide polymorphisms (SNPs) in relation to risk of colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS Case-control study using data from 5 case-control and 5 cohort studies initiated between 1976 and 2003 across the United States, Canada, Australia, and Germany and including colorectal cancer cases (n=8634) and matched controls (n=8553) ascertained between 1976 and 2011. Participants were all of European descent. EXPOSURES Genome-wide SNP data and information on regular use of aspirin and/or NSAIDs and other risk factors. MAIN OUTCOMES AND MEASURES Colorectal cancer. RESULTS Regular use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer (prevalence, 28% vs 38%; odds ratio [OR], 0.69 [95% CI, 0.64-0.74]; P = 6.2 × 10(-28)) compared with nonregular use. In the conventional logistic regression analysis, the SNP rs2965667 at chromosome 12p12.3 near the MGST1 gene showed a genome-wide significant interaction with aspirin and/or NSAID use (P = 4.6 × 10(-9) for interaction). Aspirin and/or NSAID use was associated with a lower risk of colorectal cancer among individuals with rs2965667-TT genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.61-0.70]; P = 7.7 × 10(-33)) but with a higher risk among those with rare (4%) TA or AA genotypes (prevalence, 35% vs 29%; OR, 1.89 [95% CI, 1.27-2.81]; P = .002). In case-only interaction analysis, the SNP rs16973225 at chromosome 15q25.2 near the IL16 gene showed a genome-wide significant interaction with use of aspirin and/or NSAIDs (P = 8.2 × 10(-9) for interaction). Regular use was associated with a lower risk of colorectal cancer among individuals with rs16973225-AA genotype (prevalence, 28% vs 38%; OR, 0.66 [95% CI, 0.62-0.71]; P = 1.9 × 10(-30)) but was not associated with risk of colorectal cancer among those with less common (9%) AC or CC genotypes (prevalence, 36% vs 39%; OR, 0.97 [95% CI, 0.78-1.20]; P = .76). CONCLUSIONS AND RELEVANCE In this genome-wide investigation of gene × environment interactions, use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer, and this association differed according to genetic variation at 2 SNPs at chromosomes 12 and 15. Validation of these findings in additional populations may facilitate targeted colorectal cancer prevention strategies.

Collaboration


Dive into the Mathieu Lemire's collaboration.

Top Co-Authors

Avatar

Thomas J. Hudson

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenny Chang-Claude

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Hermann Brenner

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonja I. Berndt

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tabitha A. Harrison

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Brent W. Zanke

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Catherine Laprise

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar

Carolyn M. Hutter

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge