Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathivadhani Panneerselvam is active.

Publication


Featured researches published by Mathivadhani Panneerselvam.


PLOS ONE | 2010

Loss of Caveolin-1 Accelerates Neurodegeneration and Aging

Brian P. Head; Jason Nigel John Peart; Mathivadhani Panneerselvam; Takaakira Yokoyama; Matthew L. Pearn; Ingrid R. Niesman; Jacqueline A. Bonds; Jan M. Schilling; Atsushi Miyanohara; John Patrick Headrick; Sameh S. Ali; David Roth; Piyush M. Patel; Hemal H. Patel

Background The aged brain exhibits a loss in gray matter and a decrease in spines and synaptic densities that may represent a sequela for neurodegenerative diseases such as Alzheimers. Membrane/lipid rafts (MLR), discrete regions of the plasmalemma enriched in cholesterol, glycosphingolipids, and sphingomyelin, are essential for the development and stabilization of synapses. Caveolin-1 (Cav-1), a cholesterol binding protein organizes synaptic signaling components within MLR. It is unknown whether loss of synapses is dependent on an age-related loss of Cav-1 expression and whether this has implications for neurodegenerative diseases such as Alzheimers disease. Methodology/Principal Findings We analyzed brains from young (Yg, 3-6 months), middle age (Md, 12 months), aged (Ag, >18 months), and young Cav-1 KO mice and show that localization of PSD-95, NR2A, NR2B, TrkBR, AMPAR, and Cav-1 to MLR is decreased in aged hippocampi. Young Cav-1 KO mice showed signs of premature neuronal aging and degeneration. Hippocampi synaptosomes from Cav-1 KO mice showed reduced PSD-95, NR2A, NR2B, and Cav-1, an inability to be protected against cerebral ischemia-reperfusion injury compared to young WT mice, increased Aβ, P-Tau, and astrogliosis, decreased cerebrovascular volume compared to young WT mice. As with aged hippocampi, Cav-1 KO brains showed significantly reduced synapses. Neuron-targeted re-expression of Cav-1 in Cav-1 KO neurons in vitro decreased Aβ expression. Conclusions Therefore, Cav-1 represents a novel control point for healthy neuronal aging and loss of Cav-1 represents a non-mutational model for Alzheimers disease.


Journal of the American College of Cardiology | 2011

Cardiac-Specific Overexpression of Caveolin-3 Attenuates Cardiac Hypertrophy and Increases Natriuretic Peptide Expression and Signaling

Yousuke T. Horikawa; Mathivadhani Panneerselvam; Yoshitaka Kawaraguchi; Yasuo M. Tsutsumi; Sameh S. Ali; Ravi C. Balijepalli; Fiona Murray; Brian P. Head; Ingrid R. Niesman; Timo Rieg; Volker Vallon; Paul A. Insel; Hemal H. Patel; David Roth

OBJECTIVES We hypothesized that cardiac myocyte-specific overexpression of caveolin-3 (Cav-3), a muscle-specific caveolin, would alter natriuretic peptide signaling and attenuate cardiac hypertrophy. BACKGROUND Natriuretic peptides modulate cardiac hypertrophy and are potential therapeutic options for patients with heart failure. Caveolae, microdomains in the plasma membrane that contain caveolin proteins and natriuretic peptide receptors, have been implicated in cardiac hypertrophy and natriuretic peptide localization. METHODS We generated transgenic mice with cardiac myocyte-specific overexpression of caveolin-3 (Cav-3 OE) and also used an adenoviral construct to increase Cav-3 in cardiac myocytes. RESULTS The Cav-3 OE mice subjected to transverse aortic constriction had increased survival, reduced cardiac hypertrophy, and maintenance of cardiac function compared with control mice. In left ventricle at baseline, messenger ribonucleic acid for atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were increased 7- and 3-fold, respectively, in Cav-3 OE mice compared with control subjects and were accompanied by increased protein expression for ANP and BNP. In addition, ventricles from Cav-3 OE mice had greater cyclic guanosine monophosphate levels, less nuclear factor of activated T-cell nuclear translocation, and more nuclear Akt phosphorylation than ventricles from control subjects. Cardiac myocytes incubated with Cav-3 adenovirus showed increased expression of Cav-3, ANP, and Akt phosphorylation. Incubation with methyl-β-cyclodextrin, which disrupts caveolae, or with wortmannin, a PI3K inhibitor, blocked the increase in ANP expression. CONCLUSIONS These results imply that cardiac myocyte-specific Cav-3 OE is a novel strategy to enhance natriuretic peptide expression, attenuate hypertrophy, and possibly exploit the therapeutic benefits of natriuretic peptides in cardiac hypertrophy and heart failure.


The FASEB Journal | 2012

Mitochondria-localized caveolin in adaptation to cellular stress and injury

Heidi N. Fridolfsson; Yoshitaka Kawaraguchi; Sameh S. Ali; Mathivadhani Panneerselvam; Ingrid R. Niesman; J. Cameron Finley; Sarah E. Kellerhals; Michael Y. Migita; Hideshi Okada; Ana L. Moreno; Michelle Jennings; Michael W. Kidd; Jacqueline A. Bonds; Ravi C. Balijepalli; Robert S. Ross; Piyush M. Patel; Atsushi Miyanohara; Qun Chen; Edward J. Lesnefsky; Brian P. Head; David Roth; Paul A. Insel; Hemal H. Patel

We show here that the apposition of plasma membrane caveolae and mitochondria (first noted in electron micrographs >50 yr ago) and caveolae‐mitochondria interaction regulates adaptation to cellular stress by modulating the structure and function of mitochondria. In C57Bl/6 mice engineered to overexpress caveolin specifically in cardiac myocytes (Cav‐3 OE), localization of caveolin to mitochondria increases membrane rigidity (4.2%; P<0.05), tolerance to calcium, and respiratory function (72% increase in state 3 and 23% increase in complex IV activity; P<0.05), while reducing stress‐induced generation of reactive oxygen species (by 20% in cellular superoxide and 41 and 28% in mitochondrial superoxide under states 4 and 3, respectively; P<0.05) in Cav‐3 OE vs. TGneg. By contrast, mitochondrial function is abnormal in caveolin‐knockout mice and Caenorhabditis elegans with null mutations in caveolin (60% increase free radical in Cav‐2 C. elegans mutants; P<0.05). In human colon cancer cells, mitochondria with increased caveolin have a 30% decrease in apoptotic stress (P<0.05), but cells with disrupted mitochondria‐caveolin interaction have a 30% increase in stress response (P<0.05). Targeted gene transfer of caveolin to mitochondria in C57Bl/6 mice increases cardiac mitochondria tolerance to calcium, enhances respiratory function (increases of 90% state 4, 220% state 3, 88% complex IV activity; P<0.05), and decreases (by 33%) cardiac damage (P<0.05). Physical association and apparently the transfer of caveolin between caveolae and mitochondria is thus a conserved cellular response that confers protection from cellular damage in a variety of tissues and settings.—Fridolfsson, H. N., Kawaraguchi, Y., Ali, S. S., Panneerselvam, M., Niesman, I. R., Finley, J. C., Kellerhals, S. E., Migita, M. Y., Okada, H., Moreno, A. L., Jennings, M., Kidd, M. W., Bonds, J. A., Balijepalli, R. C., Ross, R. S., Patel, P. M., Miyanohara, A., Chen, Q., Lesnefsky, E. J., Head, B. P., Roth, D. M., Insel, P. A., Patel, H. H. Mitochondria‐localized caveolin in adaptation to cellular stress and injury. FASEB J. 26, 4637–4649 (2012). www.fasebj.org


American Journal of Physiology-heart and Circulatory Physiology | 2010

Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on δ-opioid receptor stimulation

Mathivadhani Panneerselvam; Yasuo Tsutsumi; Jacqueline A. Bonds; Yousuke T. Horikawa; Michelle Saldana; Nancy D. Dalton; Brian P. Head; Piyush M. Patel; David Roth; Hemal H. Patel

Epicatechin, a flavonoid, is a well-known antioxidant linked to a variety of protective effects in both humans and animals. In particular, its role in protection against cardiovascular disease has been demonstrated by epidemiologic studies. Low-dose epicatechin, which does not have significant antioxidant activity, is also protective; however, the mechanism by which low-dose epicatechin induces this effect is unknown. Our laboratory tested the hypothesis that low-dose epicatechin mediates cardiac protection via opioid receptor activation. C57BL/6 mice were randomly assigned to 1 of 10 groups: control, epicatechin, naloxone (nonselective opioid receptor antagonist), epicatechin + naloxone, naltrindole (δ-specific opioid receptor antagonist), epicatechin + naltrindole, norbinaltorphimine (nor-BNI, κ-specific opioid receptor antagonist), epicatechin + nor-BNI, 5-hydroxydecanoic acid [5-HD, ATP-sensitive potassium channel antagonist], and epicatechin + 5-HD. Epicatechin (1 mg/kg) or other inhibitors (5 mg/kg) were administered by oral gavage or intraperitoneal injection, respectively, daily for 10 days. Mice were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion, and infarct size was determined via planimetry. Whole heart homogenates were assayed for downstream opioid receptor signaling targets. Infarct size was significantly reduced in epicatechin- and epicatechin + nor-BNI-treated mice compared with control mice. This protection was blocked by naloxone, naltrindole, and 5-HD. Epicatechin and epicatechin + nor-BNI increased the phosphorylation of Src, Akt, and IκBα, while simultaneously decreasing the expression of c-Jun NH(2)-terminal kinase and caspase-activated DNase. All signaling effects are consistent with opioid receptor stimulation and subsequent cardiac protection. Naloxone, naltrindole, and 5-HD attenuated these effects. In conclusion, epicatechin acts via opioid receptors and more specifically through the δ-opioid receptor to produce cardiac protection from ischemia-reperfusion injury.


Proceedings of the National Academy of Sciences of the United States of America | 2013

A kinase interacting protein (AKIP1) is a key regulator of cardiac stress.

Mira Sastri; Kristofer J. Haushalter; Mathivadhani Panneerselvam; Philip Chang; Heidi N. Fridolfsson; J. Cameron Finley; Daniel Ng; Jan M. Schilling; Atsushi Miyanohara; Michele E. Day; Hiro Hakozaki; Susanna Petrosyan; Antonius Koller; Charles C. King; Manjula Darshi; Donald K. Blumenthal; Sameh S. Ali; David Roth; Hemal H. Patel; Susan S. Taylor

Significance Early signaling events leading to protection in the heart under cardiac injury are poorly understood. We identified one such protein, A kinase interacting protein (AKIP1), as a modulator that responds to oxidative stress; up-regulation of AKIP1 showed protection to ischemic injury through enhanced mitochondrial integrity. We show AKIP1 functions as a molecular scaffold via interaction with mitochondrial apoptosis inducing factor and increases protein kinase A activity. These mitochondrial signaling complexes assembled by AKIP1 alter the physiological response of the heart under ischemic stress. Understanding molecular activity and regulation of AKIP1 could lead to novel therapeutic approaches to limit myocardial injury. cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism, and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial-dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene-transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release, and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart.


Molecular Nutrition & Food Research | 2013

Epicatechin regulation of mitochondrial structure and function is opioid receptor dependent

Mathivadhani Panneerselvam; Sameh S. Ali; J. Cameron Finley; Sarah E. Kellerhals; Michael Y. Migita; Brian P. Head; Piyush M. Patel; David Roth; Hemal H. Patel

SCOPE The flavanol (-)-epicatechin (Epi), a component of cacao, has cardiac protective benefits in humans. Our previous study demonstrated Epi has δ-opioid receptor (DOR) binding activity and promotes cardiac protection. Here we examined the effects of 10 days of Epi treatment on: cardiac mitochondrial respiration, reactive oxygen species production, calcium swelling, and mitochondrial membrane fluidity. METHODS AND RESULTS Mice were randomized into four groups: (i) control (saline), (ii) naltrindole (Nalt; DOR antagonist), (iii) Epi, and (iv) Epi + Nalt and received 1 mg/kg Epi or water via oral gavage. Nalt groups received 5 mg/kg ip per day for 10 days. Significant increases in mitochondrial respiration and enhanced free radical production during state 3 respiration were observed with Epi. Additionally, we observed significant increases in rigidity of mitochondrial membranes and resistance to calcium-induced mitochondrial swelling with Epi treatment. Blocking the DOR with Nalt resulted in decreases in all of the observed parameters by Epi treatment. CONCLUSION These findings indicate that Epi induces an integrated response that includes metabolic and structural changes in cardiac mitochondria resulting in greater functional capacity via DOR. Mitochondrial targeted effects of epicatechin may explain the physiologic benefit observed on cardiac protection and support epicatechins potential clinical application as a cardiac protective mimetic.


Advances in Experimental Medicine and Biology | 2012

Caveolins and heart diseases.

Mathivadhani Panneerselvam; Hemal H. Patel; David Roth

Caveolins serve as a platform in plasma membrane associated caveolae to orchestrate various signaling molecules to effectively communicate extracellular signals into the interior of cell. All three types of caveolin, Cav-1, Cav-2 and Cav-3 are expressed throughout the cardiovascular system especially by the major cell types involved including endothelial cells, cardiac myocytes, smooth muscle cells and fibroblasts. The functional significance of caveolins in the cardiovascular system is evidenced by the fact that caveolin loss leads to the development of severe cardiac pathology. Caveolin gene mutations are associated with altered expression of caveolin protein and inherited arrhythmias. Altered levels of caveolins and related downstream signaling molecules in cardiomyopathies validate the integral participation of caveolin in normal cardiac physiology. This chapter will provide an overview of the role caveolins play in cardiovascular disease. Furthering our understanding of the role for caveolins in cardiovascular pathophysiology has the potential to lead to the manipulation of caveolins as novel therapeutic targets.


Life Sciences | 2011

Role of decoy molecules in neuronal ischemic preconditioning.

Mathivadhani Panneerselvam; Piyush M. Patel; David Roth; Michael W. Kidd; Brian P. Head; Ingrid R. Niesman; Satoki Inoue; Hemal H. Patel; Daniel P. Davis

AIMS Decoy receptors bind with TNF related apoptosis inducing ligands (TRAIL) but do not contain the cytoplasmic domains necessary to transduce apoptotic signals. We hypothesized that decoy receptors may confer neuronal protection against lethal ischemia after ischemic preconditioning (IPC). MAIN METHOD Mixed cortical neurons were exposed to IPC one day prior to TRAIL treatment or lethal ischemia. KEY FINDINGS IPC increased decoy receptor but reduced death receptor expression compared to lethal ischemia. IPC-induced increase in decoy receptor expression was reduced by prior treatment with CAPE, a nuclear factor-kappa B inhibitor (NFκB). SIGNIFICANCE Expression of decoy molecules, dependent on NFκB, may mediate neuronal survival induced by IPC.


The FASEB Journal | 2010

Inhibition of glycogen synthase kinase (GSK)-3{beta} is involved in isoflurane-induced delayed cardiac protection

Yoshitaka Kawaraguchi; Mathivadhani Panneerselvam; Yasuo Tsutsumi; Michael W. Kidd; Ana L. Moreno; Piyush M. Patel; David Roth; Hemal H. Patel


The FASEB Journal | 2010

Regulation of mitochondrial function by caveolin-3

Ana L. Moreno; Michael W. Kidd; Mathivadhani Panneerselvam; David Roth; Hemal H. Patel

Collaboration


Dive into the Mathivadhani Panneerselvam's collaboration.

Top Co-Authors

Avatar

Hemal H. Patel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian P. Head

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sameh S. Ali

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge