Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matilde Colella is active.

Publication


Featured researches published by Matilde Colella.


Journal of Biological Chemistry | 2003

Stable Interactions between Mitochondria and Endoplasmic Reticulum Allow Rapid Accumulation of Calcium in a Subpopulation of Mitochondria

Luisa Filippin; Paulo J. Magalhães; Giulietta Di Benedetto; Matilde Colella; Tullio Pozzan

To better understand the functional role of the mitochondrial network in shaping the Ca2+ signals in living cells, we took advantage both of the newest genetically engineered green fluorescent protein-based Ca2+ sensors (“Cameleons,” “Camgaroos,” and “Pericams”) and of the classical Ca2+-sensitive photoprotein aequorin, all targeted to the mitochondrial matrix. The properties of the green fluorescent protein-based probes in terms of subcellular localization, photosensitivity, and Ca2+ affinity have been analyzed in detail. It is concluded that the ratiometric pericam is, at present, the most reliable mitochondrial Ca2+ probe for single cell studies, although this probe too is not devoid of problems. The results obtained with ratiometric pericam in single cells, combined with those obtained at the population level with aequorin, provide strong evidence demonstrating that the close vicinity of mitochondria to the Ca2+ release channels (and thus responsible for the fast uptake of Ca2+ by mitochondria upon receptor activation) are highly stable in time, suggesting the existence of specific interactions between mitochondria and the endoplasmic reticulum.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: Role of calcineurin/NFAT as Ca2+ signal integrators

Matilde Colella; Francesca Grisan; Valérie Robert; Jay D. Turner; Andrew P. Thomas; Tullio Pozzan

The role of Ca2+ signaling in triggering hypertrophy was investigated in neonatal rat cardiomyocytes in vitro. We show that an increase in cell size and sarcomere reorganization were elicited by receptor agonists such as Angiotensin II, aldosterone, and norepinephrine and by a small rise in medium KCl concentration, a treatment devoid of direct effects on receptor functions. All these treatments increased the frequency of spontaneous [Ca2+] transients, caused nuclear translocation of transfected NFAT(GFP), and increased the expression of a NFAT-sensitive reporter gene. There was no increase in Ca2+ spark frequency in the whole cell or in the perinuclear region under these conditions. Hypertrophy and NFAT translocation but not the increased frequency of [Ca2+] transients were inhibited by the calcineurin inhibitor cyclosporine A. Hypertrophy by the different stimuli was insensitive to inhibition of myofilament contraction. We concluded that calcineurin–NFAT can act as integrators of the contractile Ca2+ signal, and that they can decode alterations in the frequency even of rapid Ca2+ oscillations.


Journal of Biological Chemistry | 2003

A Reassessment of the Effects of Luminal [Ca2+] on Inositol 1,4,5-Trisphosphate-induced Ca2+ Release from Internal Stores

Rosa Caroppo; Matilde Colella; Angela Colasuonno; Annunziata DeLuisi; Lucantonio Debellis; Silvana Curci; Aldebaran M. Hofer

Inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release from intracellular stores displays complex kinetic behavior. While it well established that cytosolic [Ca2+] can modulate release by acting on the InsP3 receptor directly, the role of the filling state of internal Ca2+stores in modulating Ca2+ release remains unclear. Here we have reevaluated this topic using a technique that permits rapid and reversible changes in free [Ca2+] in internal stores of living intact cells without altering cytoplasmic [Ca2+], InsP3 receptors, or sarcoendoplasmic reticulum Ca2+ ATPases (SERCAs). N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylene diamine (TPEN), a membrane-permeant, low affinity Ca2+ chelator was used to manipulate [Ca2+] in intracellular stores, while [Ca2+] changes within the store were monitored directly with the low-affinity Ca2+ indicator, mag-fura-2, in intact BHK-21 cells. 200 μm TPEN caused a rapid drop in luminal free [Ca2+] and significantly reduced the extent of the response to stimulation with 100 nm bradykinin, a calcium-mobilizing agonist. The same effect was observed when intact cells were pretreated with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid(acetoxymethyl ester) (BAPTA-AM) to buffer cytoplasmic [Ca2+] changes. Although inhibition of Ca2+ uptake using the SERCA inhibitor tBHQ permitted significantly larger release of Ca2+ from stores, TPEN still attenuated the release in the presence of tBHQ in BAPTA-AM-loaded cells. These results demonstrate that the filling state of stores modulates the magnitude of InsP3-induced Ca2+release by additional mechanism(s) that are independent of regulation by cytoplasmic [Ca2+] or effects on SERCA pumps.


Mitochondrion | 2010

Mitochondrial localization of human FAD synthetase isoform 1

Enza Maria Torchetti; Carmen Brizio; Matilde Colella; Michele Galluccio; Teresa Anna Giancaspero; Cesare Indiveri; Marina Roberti; Maria Barile

FAD synthetase or ATP:FMN adenylyl transferase (FADS or FMNAT, EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. We face here the still controversial sub-cellular localization of FADS in eukaryotes. First, by western blotting experiments, we confirm the existence in rat liver of different FADS isoforms which are distinct for molecular mass and sub-cellular localization. A cross-reactive band with an apparent molecular mass of 60 kDa on SDS-PAGE is localized in the internal compartments of freshly isolated purified rat liver mitochondria. Recently we have identified two isoforms of FADS in humans, that differ for an extra-sequence of 97 amino acids at the N-terminus, present only in isoform 1 (hFADS1). The first 17 residues of hFADS1 represent a cleavable mitochondrial targeting sequence (by Target-P prediction). The recombinant hFADS1 produced in Escherichia coli showed apparent K(m) and V(max) values for FMN equal to 1.3+/-0.7 microM and 4.4+/-1.3 nmol x min(-1) x mg protein(-1), respectively, and was inhibited by FMN at concentration higher than 1.5 microM. The in vitro synthesized hFADS1, but not hFADS2, is imported into rat liver mitochondria and processed into a lower molecular mass protein product. Immunofluorescence confocal microscopy performed on BHK-21 and Caco-2 cell lines transiently expressing the two human isoforms, definitively confirmed that hFADS1, but not hFADS2, localizes in mitochondria.


Journal of Cell Biology | 2004

Extracellular calcium acts as a “third messenger” to regulate enzyme and alkaline secretion

Rosa Caroppo; Andrea Gerbino; Gregorio Fistetto; Matilde Colella; Lucantonio Debellis; Aldebaran M. Hofer; Silvana Curci

It is generally assumed that the functional consequences of stimulation with Ca2+-mobilizing agonists are derived exclusively from the second messenger action of intracellular Ca2+, acting on targets inside the cells. However, during Ca2+ signaling events, Ca2+ moves in and out of the cell, causing changes not only in intracellular Ca2+, but also in local extracellular Ca2+. The fact that numerous cell types possess an extracellular Ca2+ “sensor” raises the question of whether these dynamic changes in external [Ca2+] may serve some sort of messenger function. We found that in intact gastric mucosa, the changes in extracellular [Ca2+] secondary to carbachol-induced increases in intracellular [Ca2+] were sufficient and necessary to elicit alkaline secretion and pepsinogen secretion, independent of intracellular [Ca2+] changes. These findings suggest that extracellular Ca2+ can act as a “third messenger” via Ca2+ sensor(s) to regulate specific subsets of tissue function previously assumed to be under the direct control of intracellular Ca2+.


Photochemistry and Photobiology | 1999

LIGHT-DEPENDENT AND BIOCHEMICAL PROPERTIES OF TWO DIFFERENT BANDS OF BACTERIORHODOPSIN ISOLATED ON PHENYL-SEPHAROSE CL-4B

Francesco Lopez; Simona Lobasso; Matilde Colella; Angela Agostiano; Angela Corcelli

Abstract— We report a detailed description of the light‐dependent and biochemical properties of two different bands of isolated and nearly delipidated bacteriorhodopsin obtained from chromatography on phenyl‐Sepharose CL‐4B. The two bands (BR I and BR II) showed a number of markedly different spectroscopic and biochemical characteristics: different absorption maximums in the dark, different light/dark adaptations, different M decay kinetics, different stabilities, different responses to titration with alkali in the dark and different circular dichroism (CD) spectra. Organic phosphate contents of BR I and BR II were measured; we found that more than 90% of purple membrane organic phosphate was removed in the course of chromatography and that the phospholipid/protein molar ratio was always higher in BR I than in BR II. In many functional aspects (high stability, response to light adaptation, spectral changes in the dark by alkali addition and bilobate CD spectrum) the first band appeared to be similar to the purple membrane. We suggest that the functional differences between the two bands depend on the fact that the first band (BR I) contains mostly bacteriorhodopsin aggregates corresponding to purple membrane trimers, while the second band (BR II) contains only bacteriorhodopsin monomers.


Journal of Biological Chemistry | 2013

FAD Synthesis and Degradation in the Nucleus Create a Local Flavin Cofactor Pool

Teresa Anna Giancaspero; Giovanni Busco; Concetta Panebianco; Claudia Carmone; Angelica Miccolis; Grazia Maria Liuzzi; Matilde Colella; Maria Barile

Background: FAD synthase is known to catalyze the biosynthesis of FAD in cytosol and mitochondria. Results: The existence of a nuclear FAD synthase and a FAD-hydrolyzing activity is demonstrated. Conclusion: A dynamic pool of FAD exists in the nucleus. Significance: Nuclear, mitochondrial, and cytosolic FAD synthase pools constitute a flavin network involved in the regulation of cellular metabolism and epigenetic events. FAD is a redox cofactor ensuring the activity of many flavoenzymes mainly located in mitochondria but also relevant for nuclear redox activities. The last enzyme in the metabolic pathway producing FAD is FAD synthase (EC 2.7.7.2), a protein known to be localized both in cytosol and in mitochondria. FAD degradation to riboflavin occurs via still poorly characterized enzymes, possibly belonging to the NUDIX hydrolase family. By confocal microscopy and immunoblotting experiments, we demonstrate here the existence of FAD synthase in the nucleus of different experimental rat models. HPLC experiments demonstrated that isolated rat liver nuclei contain ∼300 pmol of FAD·mg−1 protein, which was mainly protein-bound FAD. A mean FAD synthesis rate of 18.1 pmol·min−1·mg−1 protein was estimated by both HPLC and continuous coupled enzymatic spectrophotometric assays. Rat liver nuclei were also shown to be endowed with a FAD pyrophosphatase that hydrolyzes FAD with an optimum at alkaline pH and is significantly inhibited by adenylate-containing nucleotides. The coordinate activity of these FAD forming and degrading enzymes provides a potential mechanism by which a dynamic pool of flavin cofactor is created in the nucleus. These data, which significantly add to the biochemical comprehension of flavin metabolism and its subcellular compartmentation, may also provide the basis for a more detailed comprehension of the role of flavin homeostasis in biologically and clinically relevant epigenetic events.


Biochimica et Biophysica Acta | 2012

An aryleneethynylene fluorophore for cell membrane staining.

Antonio Cardone; Francesco Lopez; Francesco Affortunato; Giovanni Busco; Aldebaran M. Hofer; Rosanna Mallamaci; Carmela Martinelli; Matilde Colella; Gianluca M. Farinola

The use of an amphiphilic aryleneethynylene fluorophore as a plasma membrane marker in fixed and living mammalian cells and liposome model systems is demonstrated. We show here that the optical properties of the novel dye are almost independent on pH, in the range 5.0-8.0. Spectroscopic characterization performed on unilamellar liposomes ascertained that the fluorescence intensity of the aryleneethynylene fluorophore greatly increases after incorporation in lipidic membranes. Experiments performed on different mammalian cells demonstrated that the novel membrane marker exhibits fast staining and a good photostability that make it a suitable tool for live cell imaging. Importantly, the aryleneethynylene fluorophore was also shown to be a fast and reliable blue membrane marker in classical multicolor immunofluorescence experiments. This study adds new important findings to the recent exploitation of the wide class of aryleneethynylene molecules as luminescent markers for biological investigations.


Biotechnology Progress | 2014

The role of microemulsions in lipase-catalyzed hydrolysis reactions

Francesco Lopez; Giuseppe Cinelli; Matilde Colella; Antonella De Leonardis; Gerardo Palazzo; Luigi Ambrosone

The kinetics of the p‐nitrophenyl butyrate hydrolysis reaction, catalyzed by Candida rugosa lipase in the water‐in‐oil microemulsion cetyltrimethylammonium bromide/water/pentanol/hexane, was investigated. The results described in the present manuscript reveal two peculiar characteristics of the reaction: (i) the initial rate of hydrolysis is very fast and (ii) by decreasing the water content of the microemulsion, the reaction rate approaches the typical behavior of reactions performed in aqueous solution. In particular, for microemulsion systems with a high water content, the end points of the reactions are dictated by the shape stability of the microemulsion. For these systems, our methodological approach shows that the process follows a second‐order kinetics equation, indicative of the dual role played by water, which is involved both as a component of the microemulsion, i.e., relevant for the microemulsion stability and as a reagent of the hydrolysis reaction. In contrast, for microemulsions containing a small amount of water, after the hydrolysis reaction the system seems to fall in the no existence range of the microemulsion. Accordingly, the kinetics results are more complex: in the initial stage, the reaction follows a zero‐order kinetics equation, while for longer reaction times a first‐order kinetics equation fits the experimental data, as would be expected for an enzymatic reaction in a homogeneous system.


Cell Calcium | 2012

Glucose increases extracellular [Ca2+] in rat insulinoma (INS-1E) pseudoislets as measured with Ca2+-sensitive microelectrodes

Andrea Gerbino; Isabella Maiellaro; Claudia Carmone; Rosa Caroppo; Lucantonio Debellis; Maria Barile; Giovanni Busco; Matilde Colella

Secretory granules of pancreatic β-cells contain high concentrations of Ca2+ ions that are co-released with insulin in the extracellular milieu upon activation of exocytosis. As a consequence, an increase in the extracellular Ca2+ concentration ([Ca2+]ext) in the microenvironment immediately surrounding β-cells should be expected following the exocytotic event. Using Ca2+-selective microelectrodes we show here that both high glucose and non-nutrient insulinotropic agents elicit a reversible increase of [Ca2+]ext within rat insulinoma (INS-1E) β-cells pseudoislets. The glucose-induced increases in [Ca2+]ext are blocked by pretreatment with different Ca2+ channel blockers. Physiological agonists acting as positive or negative modulators of the insulin secretion and drugs known to intersect the secretory machinery at different levels also induce [Ca2+]ext changes as predicted on the basis of their described action on insulin secretion. Finally, the glucose-induced [Ca2+]ext increase is strongly inhibited after disruption of the actin web, indicating that the dynamic [Ca2+]ext changes recorded in INS-1E pseudoislets by Ca2+-selective microelectrodes occur mainly as a consequence of exocytosis of Ca2+-rich granules. In conclusion, our data directly demonstrate that the extracellular spaces surrounding β-cells constitute a restricted domain where Ca2+ is co-released during insulin exocytosis, creating the basis for an autocrine/paracrine cell-to-cell communication system via extracellular Ca2+ sensors.

Collaboration


Dive into the Matilde Colella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvana Curci

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldebaran M. Hofer

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge