Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Busco is active.

Publication


Featured researches published by Giovanni Busco.


Journal of Biological Chemistry | 2005

Na+/H+ Exchanger Regulatory Factor Isoform 1 Overexpression Modulates Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Expression and Activity in Human Airway 16HBE14o- Cells and Rescues ΔF508 CFTR Functional Expression in Cystic Fibrosis Cells

Lorenzo Guerra; Teresa Fanelli; Maria Favia; Stefania Maria Riccardi; Giovanni Busco; Rosa Angela Cardone; Salvatore Carrabino; Edward J. Weinman; Stephan J. Reshkin; Massimo Conese; Valeria Casavola

There is evidence that cystic fibrosis transmembrane conductance regulator (CFTR) interacting proteins play critical roles in the proper expression and function of CFTR. The Na+/H+ exchanger regulatory factor isoform 1 (NHERF1) was the first identified CFTR-binding protein. Here we further clarify the role of NHERF1 in the regulation of CFTR activity in two human bronchial epithelial cell lines: the normal, 16HBE14o-, and the homozygous ΔF508 CFTR, CFBE41o-. Confocal analysis in polarized cell monolayers demonstrated that NHERF1 distribution was associated with the apical membrane in 16HBE14o- cells while being primarily cytoplasmic in CFBE41o- cells. Transfection of 16HBE14o- monolayers with vectors encoding for wild-type (wt) NHERF1 increased both apical CFTR expression and apical protein kinase A (PKA)-dependent CFTR-mediated chloride efflux, whereas transfection with NHERF1 mutated in the binding groove of the PDZ domains or truncated for the ERM domain inhibited both the apical CFTR expression and the CFTR-dependent chloride efflux. These data led us to hypothesize an important role for NHERF1 in regulating CFTR localization and stability on the apical membrane of 16HBE14o- cell monolayers. Importantly, wt NHERF1 overexpression in confluent ΔF508 CFBE41o- and ΔF508 CFT1-C2 cell monolayers induced both a significant redistribution of CFTR from the cytoplasm to the apical membrane and a PKA-dependent activation of CFTR-dependent chloride secretion.


European Journal of Cell Biology | 2008

Protons extruded by NHE1 : Digestive or glue?

Christian Stock; Rosa Angela Cardone; Giovanni Busco; Hermann Krähling; Albrecht Schwab; Stephan J. Reshkin

Many physiological and pathophysiological processes, such as embryogenesis, immune defense, wound healing, or metastasis, are based on cell migration and invasion. The activity of the ubiquitously expressed NHE1 isoform of the plasma membrane Na(+)/H(+) exchanger is one of the requirements for directed locomotion of migrating cells. The mechanisms by which NHE1 is involved in cell migration are multiple. NHE1 contributes to cell migration by affecting the cell volume, by regulating the intracellular pH and thereby the assembly and activity of cytoskeletal elements, by anchoring the cytoskeleton to the plasma membrane, by the organization of signal transduction and by regulating gene expression. The present review focuses on two additional, extracellular mechanisms by which NHE1 activity contributes to cell migration and invasion. Protons extruded by the NHE1 lead to local, extracellular acidification which, on the one hand, can create pH optima needed for the activity of proteinases at invadopodia/podosomes necessary for extracellular matrix digestion and, on the other hand, facilitates cell/matrix interaction and adhesion at the cell front.


Oncology Reports | 2014

Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe.

Maria Raffaella Greco; Ester Antelmi; Giovanni Busco; Lorenzo Guerra; Rosa Rubino; Valeria Casavola; Stephan J. Reshkin; Rosa Angela Cardone

Degradation of the extracellular matrix (ECM) is a critical step of tumor cell invasion and requires protease-dependent proteolysis focalized at the invadopodia where the proteolysis of the ECM occurs. Most of the extracellular proteases belong to serine- or metallo-proteases and the invadopodia is where protease activity is regulated. While recent data looking at global protease activity in the growth medium reported that their activity and role in invasion is dependent on Na+/H+ exchanger 1 (NHE1)-driven extracellular acidification, there is no data on this aspect at the invadopodia, and an open question remains whether this acid extracellular pH (pHe) activation of proteases in tumor cells occurs preferentially at invadopodia. We previously reported that the NHE1 is expressed in breast cancer invadopodia and that the NHE1‑dependent acidification of the peri-invadopodial space is critical for ECM proteolysis. In the present study, using, for the first time, in situ zymography analysis, we demonstrated a concordance between NHE1 activity, extracellular acidification and protease activity at invadopodia to finely regulate ECM digestion. We demonstrated that: (i) ECM proteolysis taking place at invadopodia is driven by acidification of the peri-invadopodia microenvironment; (ii) that the proteases have a functional pHe optimum that is acidic; (iii) more than one protease is functioning to digest the ECM at these invadopodial sites of ECM proteolysis; and (iv) lowering pHe or inhibiting the NHE1 increases protease secretion while blocking protease activity changes NHE1 expression at the invadopodia.


Journal of Biological Chemistry | 2013

FAD Synthesis and Degradation in the Nucleus Create a Local Flavin Cofactor Pool

Teresa Anna Giancaspero; Giovanni Busco; Concetta Panebianco; Claudia Carmone; Angelica Miccolis; Grazia Maria Liuzzi; Matilde Colella; Maria Barile

Background: FAD synthase is known to catalyze the biosynthesis of FAD in cytosol and mitochondria. Results: The existence of a nuclear FAD synthase and a FAD-hydrolyzing activity is demonstrated. Conclusion: A dynamic pool of FAD exists in the nucleus. Significance: Nuclear, mitochondrial, and cytosolic FAD synthase pools constitute a flavin network involved in the regulation of cellular metabolism and epigenetic events. FAD is a redox cofactor ensuring the activity of many flavoenzymes mainly located in mitochondria but also relevant for nuclear redox activities. The last enzyme in the metabolic pathway producing FAD is FAD synthase (EC 2.7.7.2), a protein known to be localized both in cytosol and in mitochondria. FAD degradation to riboflavin occurs via still poorly characterized enzymes, possibly belonging to the NUDIX hydrolase family. By confocal microscopy and immunoblotting experiments, we demonstrate here the existence of FAD synthase in the nucleus of different experimental rat models. HPLC experiments demonstrated that isolated rat liver nuclei contain ∼300 pmol of FAD·mg−1 protein, which was mainly protein-bound FAD. A mean FAD synthesis rate of 18.1 pmol·min−1·mg−1 protein was estimated by both HPLC and continuous coupled enzymatic spectrophotometric assays. Rat liver nuclei were also shown to be endowed with a FAD pyrophosphatase that hydrolyzes FAD with an optimum at alkaline pH and is significantly inhibited by adenylate-containing nucleotides. The coordinate activity of these FAD forming and degrading enzymes provides a potential mechanism by which a dynamic pool of flavin cofactor is created in the nucleus. These data, which significantly add to the biochemical comprehension of flavin metabolism and its subcellular compartmentation, may also provide the basis for a more detailed comprehension of the role of flavin homeostasis in biologically and clinically relevant epigenetic events.


Biochimica et Biophysica Acta | 2012

An aryleneethynylene fluorophore for cell membrane staining.

Antonio Cardone; Francesco Lopez; Francesco Affortunato; Giovanni Busco; Aldebaran M. Hofer; Rosanna Mallamaci; Carmela Martinelli; Matilde Colella; Gianluca M. Farinola

The use of an amphiphilic aryleneethynylene fluorophore as a plasma membrane marker in fixed and living mammalian cells and liposome model systems is demonstrated. We show here that the optical properties of the novel dye are almost independent on pH, in the range 5.0-8.0. Spectroscopic characterization performed on unilamellar liposomes ascertained that the fluorescence intensity of the aryleneethynylene fluorophore greatly increases after incorporation in lipidic membranes. Experiments performed on different mammalian cells demonstrated that the novel membrane marker exhibits fast staining and a good photostability that make it a suitable tool for live cell imaging. Importantly, the aryleneethynylene fluorophore was also shown to be a fast and reliable blue membrane marker in classical multicolor immunofluorescence experiments. This study adds new important findings to the recent exploitation of the wide class of aryleneethynylene molecules as luminescent markers for biological investigations.


Molecular Biology of the Cell | 2012

NHERF1 acts as a molecular switch to program metastatic behavior and organotropism via its PDZ domains

Rosa Angela Cardone; Maria Raffaella Greco; Mattia Capulli; Edward J. Weinman; Giovanni Busco; Antonia Bellizzi; Valeria Casavola; Ester Antelmi; Barbara Ambruosi; Maria Elena Dell'Aquila; Angelo Paradiso; Anna Teti; Nadia Rucci; Stephan J. Reshkin

Tumor metastasis is the primary cause of death in cancer patients, but the molecular mechanisms driving the evolution of the phenotype toward a specific organ is one of its less understood aspects. The scaffolding protein NHERF1 reprograms the metastatic phenotype and organotropism via the differential function of its PDZ domains.


Cell Calcium | 2012

Glucose increases extracellular [Ca2+] in rat insulinoma (INS-1E) pseudoislets as measured with Ca2+-sensitive microelectrodes

Andrea Gerbino; Isabella Maiellaro; Claudia Carmone; Rosa Caroppo; Lucantonio Debellis; Maria Barile; Giovanni Busco; Matilde Colella

Secretory granules of pancreatic β-cells contain high concentrations of Ca2+ ions that are co-released with insulin in the extracellular milieu upon activation of exocytosis. As a consequence, an increase in the extracellular Ca2+ concentration ([Ca2+]ext) in the microenvironment immediately surrounding β-cells should be expected following the exocytotic event. Using Ca2+-selective microelectrodes we show here that both high glucose and non-nutrient insulinotropic agents elicit a reversible increase of [Ca2+]ext within rat insulinoma (INS-1E) β-cells pseudoislets. The glucose-induced increases in [Ca2+]ext are blocked by pretreatment with different Ca2+ channel blockers. Physiological agonists acting as positive or negative modulators of the insulin secretion and drugs known to intersect the secretory machinery at different levels also induce [Ca2+]ext changes as predicted on the basis of their described action on insulin secretion. Finally, the glucose-induced [Ca2+]ext increase is strongly inhibited after disruption of the actin web, indicating that the dynamic [Ca2+]ext changes recorded in INS-1E pseudoislets by Ca2+-selective microelectrodes occur mainly as a consequence of exocytosis of Ca2+-rich granules. In conclusion, our data directly demonstrate that the extracellular spaces surrounding β-cells constitute a restricted domain where Ca2+ is co-released during insulin exocytosis, creating the basis for an autocrine/paracrine cell-to-cell communication system via extracellular Ca2+ sensors.


The FASEB Journal | 2010

NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space

Giovanni Busco; Rosa Angela Cardone; Maria Raffaella Greco; Antonia Bellizzi; Matilde Colella; Ester Antelmi; Maria Teresa Mancini; Maria Elena Dell'Aquila; Valeria Casavola; Angelo Paradiso; Stephan J. Reshkin


Molecular Biology of the Cell | 2007

The NHERF1 PDZ2 Domain Regulates PKA–RhoA–p38-mediated NHE1 Activation and Invasion in Breast Tumor Cells

Rosa Angela Cardone; Antonia Bellizzi; Giovanni Busco; Edward J. Weinman; Maria Elena Dell'Aquila; Valeria Casavola; Amalia Azzariti; Anita Mangia; Angelo Paradiso; Stephan J. Reshkin


Molecular Biology of the Cell | 2005

Protein kinase A gating of a pseudopodial-located RhoA/ROCK/p38/NHE1 signal module regulates invasion in breast cancer cell lines.

Rosa Angela Cardone; A. Bagorda; Antonia Bellizzi; Giovanni Busco; Lorenzo Guerra; Angelo Paradiso; Valeria Casavola; Manuela Zaccolo; Stephan J. Reshkin

Collaboration


Dive into the Giovanni Busco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Teti

University of L'Aquila

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge