Matsuyoshi Mori
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matsuyoshi Mori.
International Journal of Biomaterials | 2015
Juliana Mattos Corrêa; Matsuyoshi Mori; Heloísa Lajas Sanches; Adriana Dibo da Cruz; Edgard Poiate; Isis Andréa Venturini Pola Poiate
Silver has been used in medicine for centuries because of its antimicrobial properties. More recently, silver nanoparticles have been synthesized and incorporated into several biomaterials, since their small size provides great antimicrobial effect, at low filler level. Hence, these nanoparticles have been applied in dentistry, in order to prevent or reduce biofilm formation over dental materials surfaces. This review aims to discuss the current progress in this field, highlighting aspects regarding silver nanoparticles incorporation, such as antimicrobial potential, mechanical properties, cytotoxicity, and long-term effectiveness. We also emphasize the need for more studies to determine the optimal concentration of silver nanoparticle and its release over time.
Computer Methods and Programs in Biomedicine | 2011
Isis Andréa Poiate; Adalberto Bastos de Vasconcellos; Matsuyoshi Mori; Edgard Poiate
The purpose of this study was to compare the results of different hierarchical models in engineering analysis applied to dentistry with 2D and 3D models of a tooth and its supporting structures under 100 N occlusal loading at 45° and examine the reliability of simplified 2D models in dental research. Five models were built from computed-tomography scans: four 2D models with Plane Strain and Plane Stress State with linear triangular and quadratic quadrilateral elements and one 3D model. The finite element results indicated that the stress distribution was similar qualitatively in all models but the stress magnitude was quite different. It was concluded that 2D models are acceptable when investigating the biomechanical behavior of upper central incisor qualitatively. However, quantitative stress analysis is less reliable in 2D-finite element analysis, because 2D models overestimate the results and do not represent the complex anatomical configuration of dental structures. Therefore 3D finite element analyses of dental biomechanics cannot be simplified.
Journal of Biomechanics | 2010
Glaura Caroena; Matsuyoshi Mori; Marcos R. R. Gesualdi; Edson Aparecido Liberti; Eduardo Ferrara; Mikiya Muramatsu
The purpose of this work was the force-displacement response analysis of the masticatory process in a dried human skull by Double-Exposure Photorefractive Holographic Interferometry Technique (2E-PRHI). The load concentration and dissipation of the forces from dried human skull were analysed at applied loading stands as a Simulation of Isolated Contraction (SIC) of some mastication muscles. The 2EHI and Fringe Analysis Method were used to obtain the quantitative results of this force-displacement response. These results document quantitatively the real biomechanical response from dried human skull under applied loading and it can be used for complementary study by finite element model and others analysis type.
Applied Optics | 2007
Marcos R. R. Gesualdi; Matsuyoshi Mori; Mikiya Muramatsu; Edson Aparecido Liberti; Egberto Munin
Phase-shifting real-time holography with photorefractive Bi(12)SiO(20) crystal as holographic recording medium applied to load transmission evaluation and tension dissipation on a dried human skull under loading is presented. The applied loading stands as a simulation of isolated contraction (SIC) of some masticatories muscles. The four-frames phase-shifting technique and the unwrapping branch-cut technique were used to obtain the phase map. The quantitative results show the feasibility of the employed system in the study of microdisplacements in the skull structure provided by SIC.
Revista de Odontologia da Universidade de São Paulo | 1999
Tomie Nakakuki de Campos; Matsuyoshi Mori; Alberto Tsutomu Henmi; Tetsuo Saito
One of the main goals of the luting agent, which bonds the cast restoration to the prepared tooth, is to seal the gap between them. Standardized preparations were made on 20 extracted teeth in order to evaluate microleakage. The crowns were made in NiCr, and in one group of 10 crowns zinc phosphate was used as the luting agent; in the other 10, Panavia 21 was used. The samples were thermocycled and then put into methylene blue solution (0.5%). After buccolingual sectioning of the cemented crowns, the samples were examined with a magnifier. There was a significant difference between the two groups: 100% of the zinc phosphate cemented crowns presented microleakage reaching the dentin and the pulp and 100% of the samples with Panavia 21 did not suffer any microleakage. So, as to the marginal microleakage with cast metal crowns in NiCr, the Panavia 21 luting agent presented better results than did zinc phosphate.
Brazilian Dental Journal | 2012
Piero Rocha Zanardi; Bruno Costa; Roberto Chaib Stegun; Newton Sesma; Matsuyoshi Mori; Dalva Cruz Laganá
The present study evaluated the interchangeability of prosthetic components for external hexagon implants by measuring the precision of the implant/abutment (I/A) interface with scanning electron microscopy. Ten implants for each of three brands (SIN, Conexão, Neodent) were tested with their respective abutments (milled CoCr collar rotational and non-rotational) and another of an alternative manufacturer (Microplant) in randomly arranged I/A combinations. The degree of interchangeability between the various brands of components was defined using the original abutment interface gap with its respective implant as the benchmark dimension. Accordingly, when the result for a given component placed on an implant was equal to or smaller then that gap measured when the original component of the same brand as the implant was positioned, interchangeability was considered valid. Data were compared with the Kruskal-Wallis test at 5% significance level. Some degree of misfit was observed in all specimens. Generally, the non-rotational component was more accurate than its rotational counterpart. The latter samples ranged from 0.6-16.9 µm, with a 4.6 µm median; and the former from 0.3-12.9 µm, with a 3.4 µm median. Specimens with the abutment and fixture from Conexão had larger microgap than the original set for SIN and Neodent (p<0.05). Even though the latter systems had similar results with their respective components, their interchanged abutments did not reproduce the original accuracy. The results suggest that the alternative brand abutment would have compatibility with all systems while the other brands were not completely interchangeable.
Brazilian Dental Journal | 2015
Victor Haruo Matsubara; Fernando Igai; Regina Tamaki; Pedro Tortamano Neto; Atlas Edson Moleros Nakamae; Matsuyoshi Mori
Since the dental implant/abutment interface cannot totally seal the passage of microorganisms, the interior of implant becomes a reservoir of pathogenic microorganisms that produce and maintain chronic inflammation in the tissues around implants. Silver nanoparticles (nano-Ag) are potent and broad-spectrum antimicrobial agents. The aim of this study was to evaluate the capacity of the nano-Ag to prevent the contamination of the implant internal surface by Candida albicans, caused by the implant/abutment microgap infiltration. Thirty-six implants were used in this experiment. Three study groups were performed: experimental group (implants receiving an application of nano-Ag in their inner cavity before installation of the abutment); positive-control group (implants receiving sterile phosphate buffer saline application instead of nano-Ag) and negative-control group (implants receiving the application of nano-Ag in the inner cavity and immersed in a sterile medium). In the positive-control and experimental groups, the implants were immersed in a Candida albicans suspension. The abutments of all three groups were screwed with a 10 N torque. After 72 h of immersion inC. albicans suspension or sterile medium, the abutments were removed and the inner surface of the implants was sampled with absorbent paper cone for fungal detection. No C. albicans contamination was observed in the negative-control group. The positive-control group showed statistically higher values of colony forming units (CFUs) of C. albicans compared with the experimental group. In conclusion, silver nanoparticles reduced C. albicans colonization inside the implants, even with low torque screw abutment.
Brazilian Oral Research | 2008
Antonio Braulino de Melo Filho; Matsuyoshi Mori; Maria Aparecida Neves Jardini; Karine Tenório Landim; Ana Cristina de Oliveira Solis
Several studies have reported the benefits of sonic and/or ultrasonic instrumentation for root debridement, with most of them focusing on changes in periodontal clinical parameters. The present study investigated possible alterations in the tensile bond strength of crowns cemented with zinc phosphate cement to natural teeth after ultrasonic instrumentation. Forty recently extracted intact human third molars were selected, cleaned and stored in physiologic serum at 4 degrees C. They received standard preparations, at a 16 masculine convergence angle, and AgPd alloy crowns. The crowns were cemented with zinc phosphate cement and then divided into four groups of 10 teeth each. Each group was then subdivided into two subgroups, with one of the subgroups being submitted to 5,000 thermal cycles ranging from 55 +/- 2 to 5 +/- 2 degrees C, while the other was not. Each group was submitted to ultrasonic instrumentation for different periods of time: group 1 - 0 min (control), group 2 - 5 min, group 3 - 10 min, and group 4 - 15 min. Tensile bond strength tests were performed with an Instron testing machine (model 4310). Statistical analysis was performed using ANOVA and Tukeys test at the 5% level of significance. A significant reduction in the tensile bond strength of crowns cemented with zinc phosphate and submitted to thermal cycles was observed at 15 min (196.75 N versus 0 min = 452.01 N, 5 min = 444.23 N and 10 min = 470.85 N). Thermal cycling and ultrasonic instrumentation for 15 min caused a significant reduction in tensile bond strength (p < .05).
Revista de Odontologia da Universidade de São Paulo | 1998
Tomas Gomez; Matsuyoshi Mori; Gerson de Arruda Corrêa; Edmir Matson
The authors present a new metodology aiming to reduce the dimensional alterations of acrylic resins used for total prosthesis in order to eliminate the dimensional alterations, achiving better total prothesis and decreasing problems for patients.
Revista de Odontologia da Universidade de São Paulo | 1997
Matsuyoshi Mori; Mario Ueti; Edmir Matson; Tetsuo Saito
This study compared the internal stress distribution in a sound tooth with that in an endodontically treated tooth, by the finite element method, in a two-dimensional, lower premolar model, under an axial load of 30 kgf applied to three points (primary occlusal contact and stabilizing occlusal contact). Results indicated that there was a greater cumulation of stress in the buccal half of both teeth. In both models, peak stress was observed at the places where loads were applied. The restored tooth presented greater stress due to the greater Youngs modulus of the utilized restoring materials. It was therefore demonstrated that there are differences in the distribution of internal stress between both models