Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matt Law is active.

Publication


Featured researches published by Matt Law.


Advanced Materials | 2002

Nanowire Ultraviolet Photodetectors and Optical Switches

Hannes Kind; Haoquan Yan; Benjamin Messer; Matt Law; Peidong Yang

no attention has been given to the photoconducting properties of nanowires despite the exciting possibilities for use in optoelectronic circuits. Here, we show the possibility of creating highly sensitive nanowire switches by exploring the photoconducting properties of individual semiconductor nanowires. The conductivity of the ZnO nanowires is extremely sensitive to ultraviolet light exposure. The light-induced conductivity increase allows us to reversibly switch the nanowires between “OFF” and “ON” states, an optical gating phenomenon analogous to the commonly used electrical gating. [2,3,10]


Chemical Reviews | 2010

Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells

Arthur J. Nozik; Matthew C. Beard; Joseph M. Luther; Matt Law; Randy J. Ellingson; Justin C. Johnson

Here, we will first briefly summarize the general principles of QD synthesis using our previous work on InP as an example. Then we will focus on QDs of the IV-VI Pb chalcogenides (PbSe, PbS, and PbTe) and Si QDs because these were among the first QDs that were reported to produce multiple excitons upon absorbing single photons of appropriate energy (a process we call multiple exciton generation (MEG)). We note that in addition to Si and the Pb-VI QDs, two other semiconductor systems (III-V InP QDs(56) and II-VI core-shell CdTe/CdSe QDs(57)) were very recently reported to also produce MEG. Then we will discuss photogenerated carrier dynamics in QDs, including the issues and controversies related to the cooling of hot carriers and the magnitude and significance of MEG in QDs. Finally, we will discuss applications of QDs and QD arrays in novel quantum dot PV cells, where multiple exciton generation from single photons could yield significantly higher PV conversion efficiencies.


Nano Letters | 2008

Schottky Solar Cells Based on Colloidal Nanocrystal Films

Joseph M. Luther; Matt Law; Matthew C. Beard; Qing Song; Matthew O. Reese; Randy J. Ellingson; Arthur J. Nozik

We describe here a simple, all-inorganic metal/NC/metal sandwich photovoltaic (PV) cell that produces an exceptionally large short-circuit photocurrent (>21 mA cm(-2)) by way of a Schottky junction at the negative electrode. The PV cell consists of a PbSe NC film, deposited via layer-by-layer (LbL) dip coating that yields an EQE of 55-65% in the visible and up to 25% in the infrared region of the solar spectrum, with a spectrally corrected AM1.5G power conversion efficiency of 2.1%. This NC device produces one of the largest short-circuit currents of any nanostructured solar cell, without the need for sintering, superlattice order or separate phases for electron and hole transport.


ACS Nano | 2008

Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol

Joseph M. Luther; Matt Law; Qing Song; Craig L. Perkins; Matthew C. Beard; Arthur J. Nozik

We describe the structural, optical, and electrical properties of high-quality films of PbSe nanocrystals fabricated by a layer-by-layer (LbL) dip-coating method that utilizes 1,2-ethanedithiol (EDT) as an insolubilizing agent. Comparative characterization of nanocrystal films made by spin-coating and by the LbL process shows that EDT quantitatively displaces oleic acid on the PbSe surface, causing a large volume loss that electronically couples the nanocrystals while severely degrading their positional and crystallographic order of the films. Field-effect transistors based on EDT-treated films are moderately conductive and ambipolar in the dark, becoming p-type and 30-60 times more conductive under 300 mW cm(-2) broadband illumination. The nanocrystal films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type solids. The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy conversion.


Nano Letters | 2010

Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids

Yao Liu; Markelle Gibbs; James Puthussery; Rachelle Ihly; Hugh W. Hillhouse; Matt Law

We measure the room-temperature electron and hole field-effect mobilities (micro(FE)) of a series of alkanedithiol-treated PbSe nanocrystal (NC) films as a function of NC size and the length of the alkane chain. We find that carrier mobilities decrease exponentially with increasing ligand length according to the scaling parameter beta = 1.08-1.10 A(-1), as expected for hopping transport in granular conductors with alkane tunnel barriers. An electronic coupling energy as large as 8 meV is calculated from the mobility data. Mobilities increase by 1-2 orders of magnitude with increasing NC diameter (up to 0.07 and 0.03 cm(2) V(-1) s(-1) for electrons and holes, respectively); the electron mobility peaks at a NC size of approximately 6 nm and then decreases for larger NCs, whereas the hole mobility shows a monotonic increase. The size-mobility trends seem to be driven primarily by the smaller number of hops required for transport through arrays of larger NCs but may also reflect a systematic decrease in the depth of trap states with decreasing NC band gap. We find that carrier mobility is independent of the polydispersity of the NC samples, which can be understood if percolation networks of the larger-diameter, smaller-band-gap NCs carry most of the current in these NC solids. Our results establish a baseline for mobility trends in PbSe NC solids, with implications for fabricating high-mobility NC-based optoelectronic devices.


Journal of the American Chemical Society | 2008

Structural, Optical, and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally or with Simple Amines

Matt Law; Joseph M. Luther; Qing Song; Barbara K. Hughes; Craig L. Perkins; Arthur J. Nozik

We describe the structural, optical, and electrical properties of films of spin-cast, oleate-capped PbSe nanocrystals that are treated thermally or chemically in solutions of hydrazine, methylamine, or pyridine to produce electronically coupled nanocrystal solids. Postdeposition heat treatments trigger nanocrystal sintering at approximately 200 degrees C, before a substantial fraction of the oleate capping group evaporates or pyrolyzes. The sintered nanocrystal films have a large hole density and are highly conductive. Most of the amine treatments preserve the size of the nanocrystals and remove much of the oleate, decreasing the separation between nanocrystals and yielding conductive films. X-ray scattering, X-ray photoelectron and optical spectroscopy, electron microscopy, and field-effect transistor electrical measurements are used to compare the impact of these chemical treatments. We find that the concentration of amines adsorbed to the NC films is very low in all cases. Treatments in hydrazine in acetonitrile remove only 2-7% of the oleate yet result in high-mobility n-type transistors. In contrast, ethanol-based hydrazine treatments remove 85-90% of the original oleate load. Treatments in pure ethanol strip 20% of the oleate and create conductive p-type transistors. Methylamine- and pyridine-treated films are also p-type. These chemically treated films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type nanocrystal solids. Our results aid in the rational development of solar cells based on colloidal nanocrystal films.


Journal of the American Chemical Society | 2011

Colloidal Iron Pyrite (FeS2) Nanocrystal Inks for Thin-Film Photovoltaics

James Puthussery; Sean Seefeld; Nicholas Berry; Markelle Gibbs; Matt Law

Iron pyrite (FeS2) is a promising earth-abundant semiconductor for thin-film solar cells. In this work, phase-pure, single-crystalline, and well-dispersed colloidal FeS2 nanocrystals (NCs) were synthesized in high yield by a simple hot-injection route in octadecylamine and then were subjected to partial ligand exchange with octadecylxanthate to yield stable pyrite NC inks. Polycrystalline pyrite thin films were fabricated by sintering layers of these NCs at 500−600 °C under a sulfur atmosphere.


Nano Letters | 2009

Variations in the Quantum Efficiency of Multiple Exciton Generation for a Series of Chemically Treated PbSe Nanocrystal Films

Matthew C. Beard; Aaron G. Midgett; Matt Law; Octavi E. Semonin; Randy J. Ellingson; Arthur J. Nozik

We study multiple exciton generation (MEG) in two series of chemically treated PbSe nanocrystal (NC) films. We find that the average number of excitons produced per absorbed photon varies between 1.0 and 2.4 (+/-0.2) at a photon energy of approximately 4E(g) for films consisting of 3.7 nm NCs and between 1.1 and 1.6 (+/-0.1) at hnu approximately 5E(g) for films consisting of 7.4 nm NCs. The variations in MEG depend upon the chemical treatment used to electronically couple the NCs in each film. The single and multiexciton lifetimes also change with the chemical treatment: biexciton lifetimes increase with stronger inter-NC electronic coupling and exciton delocalization, while single exciton lifetimes decrease after most treatments relative to the same NCs in solution. Single exciton lifetimes are particularly affected by surface treatments that dope the films n-type, which we tentatively attribute to an Auger recombination process between a single exciton and an electron produced by ionization of the dopant donor. These results imply that a better understanding of the effects of surface chemistry on film doping, NC carrier dynamics, and inter-NC interactions is necessary to build solar energy conversion devices that can harvest the multiple carriers produced by MEG. Our results show that the MEG efficiency is very sensitive to the condition of the NC surface and suggest that the wide range of MEG efficiencies reported in the recent literature may be a result of uncontrolled differences in NC surface chemistry.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Optical routing and sensing with nanowire assemblies

Donald J. Sirbuly; Matt Law; Peter J. Pauzauskie; Haoquan Yan; Alex Maslov; Kelly P. Knutsen; C. Z. Ning; Richard J. Saykally; Peidong Yang

The manipulation of photons in structures smaller than the wavelength of light is central to the development of nanoscale integrated photonic systems for computing, communications, and sensing. We assemble small groups of freestanding, chemically synthesized nanoribbons and nanowires into model structures that illustrate how light is exchanged between subwavelength cavities made of three different semiconductors. The coupling strength of the optical linkages formed when nanowires are brought into contact depends both on their volume of interaction and angle of intersection. With simple coupling schemes, lasing nanowires can launch coherent pulses of light through ribbon waveguides that are up to a millimeter in length. Also, interwire coupling losses are low enough to allow light to propagate across several right-angle bends in a grid of crossed ribbons. The fraction of the guided wave traveling outside the wire/ribbon cavities is used to link nanowires through space and to separate colors within multiribbon networks. In addition, we find that nanoribbons function efficiently as waveguides in liquid media and provide a unique means for probing molecules in solution or in proximity to the waveguide surface. Our results lay the spadework for photonic devices based on assemblies of active and passive nanowire elements and presage the use of nanowire waveguides in microfluidics and biology.


ACS Nano | 2010

p-Type PbSe and PbS Quantum Dot Solids Prepared with Short-Chain Acids and Diacids

Mohammad H. Zarghami; Yao Liu; Markelle Gibbs; Eminet Gebremichael; Christopher Webster; Matt Law

We show that ligand exchange with short-chain carboxylic acids (formic, acetic, and oxalic acid) can quantitatively remove oleic acid from the surface of PbSe and PbS quantum dot (QD) films to yield p-type, carboxylate-capped QD solids with field-effect hole mobilities in the range of 10(-4)-10(-1) cm(2) V(-1) s(-1). For a given chemical treatment, PbSe devices have 10-fold higher mobilities than PbS devices because of stronger electronic coupling among the PbSe QDs and possibly a lower density of surface traps. Long-term optical and electrical measurements (i) show that carboxylate-capped PbSe QD films oxidize much more gradually in air than do thiol-capped PbSe films and (ii) quantify the slower and less extensive oxidation of PbS relative to PbSe QDs. We find that whereas the hole mobility of thiol-capped samples decreases continuously with time in air, the mobility of carboxylate-capped films first increases by an order of magnitude over several days before slowly decreasing over weeks. This behavior is a consequence of the more robust binding of carboxylate ligands to the QD surface, such that adsorbed oxygen and water initially boost the hole mobility by passivating surface states and only slowly degrade the ligand passivation to establish an oxide shell around each QD in the film. The superior hole mobilities and oxidation resistance of formic- and acetic-treated QD solids may prove useful in constructing efficient, stable QD photovoltaic devices.

Collaboration


Dive into the Matt Law's collaboration.

Top Co-Authors

Avatar

Peidong Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Arthur J. Nozik

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Justin C. Johnson

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Luther

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthew C. Beard

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig L. Perkins

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Haoquan Yan

University of California

View shared research outputs
Top Co-Authors

Avatar

Ruqian Wu

University of California

View shared research outputs
Top Co-Authors

Avatar

Yanning Zhang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge