Matteo Daghio
University of Milano-Bicocca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matteo Daghio.
Bioelectrochemistry | 2013
Pierangela Cristiani; M.L. Carvalho; Edoardo Guerrini; Matteo Daghio; Carlo Santoro; Baikun Li
The oxygen reduction due to microaerophilic biofilms grown on graphite cathodes (biocathodes) in Single Chamber Microbial Fuel Cells (SCMFCs) is proved and analysed in this paper. Pt-free cathode performances are compared with those of different platinum-loaded cathodes, before and after the biofilm growth. Membraneless SCMFCs were operating in batch-mode, filled with wastewater. A substrate (fuel) of sodium acetate (0.03 M) was periodically added and the experiment lasted more than six months. A maximum of power densities, up to 0.5 W m(-2), were reached when biofilms developed on the electrodes and the cathodic potential decreased (open circuit potential of 50-200 mV vs. SHE). The power output was almost constant with an acetate concentration of 0.01-0.05 M and it fell down when the pH of the media exceeded 9.5, independently of the Pt-free/Pt-loading at the cathodes. Current densities varied in the range of 1-5 Am(-2) (cathode area of 5 cm(2)). Quasi-stationary polarization curves performed with a three-electrode configuration on cathodic and anodic electrodes showed that the anodic overpotential, more than the cathodic one, may limit the current density in the SCMFCs for a long-term operation.
New Biotechnology | 2015
Matteo Daghio; Isabella Gandolfi; Giuseppina Bestetti; Andrea Franzetti; Edoardo Guerrini; Pierangela Cristiani
Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microbial Fuel Cell (SCMFC) fed with acetate and inoculated with a biogas digestate in order to gain more insight into anodic and cathodic EET. Taxonomic characterization of the communities was carried out by Illumina sequencing of a fragment of the 16S rRNA gene. Microorganisms belonging to Geovibrio genus and purple non-sulfur (PNS) bacteria were found to be dominant in the anodic biofilm. The alkaliphilic genus Nitrincola and anaerobic microorganisms belonging to Porphyromonadaceae family were the most abundant bacteria in the cathodic biofilm.
Applied and Environmental Microbiology | 2016
Matteo Daghio; Eleni Vaiopoulou; Sunil A. Patil; Ana Suárez-Suárez; Ian M. Head; Andrea Franzetti; Korneel Rabaey
ABSTRACT Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m−2 and 431 mA m−2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer.
Water Research | 2017
Matteo Daghio; Federico Aulenta; Eleni Vaiopoulou; Andrea Franzetti; Jan Arends; Angela Sherry; Ana Suárez-Suárez; Ian M. Head; Giuseppina Bestetti; Korneel Rabaey
Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches. Biological strategies are most benign, aiming to enhance microbial metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable and can possibly also serve as biosensors for real time monitoring of the degradation process. Despite being promising, multiple aspects need to be considered to make BES suitable for field applications including system design, electrode materials, operational parameters, mode of action and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant degradation, are currently not fully understood, particularly in relation to electron transfer mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during hydrocarbon oxidation. This review provides a comprehensive analysis of the research on bioelectrochemical remediation of oil spills and of the key parameters involved in the process.
Chemosphere | 2015
Matteo Daghio; Valeria Tatangelo; Andrea Franzetti; Isabella Gandolfi; Maddalena Papacchini; Alessandro Careghini; Elena Sezenna; Sabrina Saponaro; Giuseppina Bestetti
BTEX compounds (benzene, toluene, ethylbenzene and xylenes) and methyl tert-butyl ether (MTBE) are some of the main constituents of gasoline and can be accidentally released in the environment. In this work the effect of bioaugmentation on the microbial communities in a bench scale aerobic biobarrier for gasoline contaminated water treatment was studied by 16S rRNA gene sequencing. Catabolic genes (tmoA and xylM) were quantified by qPCR, in order to estimate the biodegradation potential, and the abundance of total bacteria was estimated by the quantification of the number of copies of the 16S rRNA gene. Hydrocarbon concentration was monitored over time and no difference in the removal efficiency for the tested conditions was observed, either with or without the microbial inoculum. In the column without the inoculum the most abundant genera were Acidovorax, Bdellovibrio, Hydrogenophaga, Pseudoxanthomonas and Serpens at the beginning of the column, while at the end of the column Thauera became dominant. In the inoculated test the microbial inoculum, composed by Rhodococcus sp. CE461, Rhodococcus sp. CT451 and Methylibium petroleiphilum LMG 22953, was outcompeted. Quantitative PCR results showed an increasing in xylM copy number, indicating that hydrocarbon degrading bacteria were selected during the treatment, although only a low increase of the total biomass was observed. However, the bioaugmentation did not lead to an increase in the degradative potential of the microbial communities.
Journal of Hazardous Materials | 2015
Alessandro Careghini; Sabrina Saponaro; Elena Sezenna; Matteo Daghio; Andrea Franzetti; Isabella Gandolfi; Giuseppina Bestetti
Methyl tert-butyl ether (MTBE) is used at significant percentages as an additive of unleaded gasoline. The physical-chemical properties of the substance (water solubility, soil organic carbon-water partition coefficient) cause high mobility and high concentrations in groundwater. Laboratory scale batch and column tests and mathematical modeling were performed to study the feasibility of a biobarrier (BB), that is an in situ permeable biological barrier with or without inoculation, for the remediation of MTBE and other gasoline-derived pollutants (benzene, toluene, ethylbenzene, o-xylene and m+p-xylenes, BTEXs) polluted groundwater and to estimate kinetic constants. The experimental results showed simultaneous biodegradation of MTBE and BTEXs, with similar removals in the uninoculated and the inoculated systems. Ranges for the first order kinetic removal were obtained for MTBE ((0.18±0.02)/(0.28±0.11d(-1))), B ((0.39±0.12)/(0.56±0.12d(-1))), T ((0.51±0.03)/(0.78±0.15d(-1))), E ((0.46±0.18)/(1.57±0.21d(-1))), o-X ((0.24±0.08)/(0.64±0.09d(-1))) and m+p-X ((0.20±0.04)/(1.21±0.04d(-1))). The results of the laboratory tests allowed to improve mathematical modeling in order to design a full-scale BB at a gasoline-contaminated site.
Journal of Hazardous Materials | 2018
Matteo Daghio; Anna Espinoza Tofalos; Barbara Leoni; Pierangela Cristiani; Maddalena Papacchini; Elham Jalilnejad; Giuseppina Bestetti; Andrea Franzetti
BTEX compounds (Benzene, Toluene, Ethylbenzene and Xylenes) are toxic hydrocarbons that can be found in groundwater due to accidental spills. Bioelectrochemical systems (BES) are an innovative technology to stimulate the anaerobic degradation of hydrocarbons. In this work, single chamber BESs were used to assess the degradation of a BTEX mixture at different applied voltages (0.8V, 1.0V, 1.2V) between the electrodes. Hydrocarbon degradation was linked to current production and to sulfate reduction, at all the tested potentials. The highest current densities (about 200mA/m2 with a maximum peak at 480mA/m2) were observed when 0.8V were applied. The application of an external voltage increased the removal of toluene, m-xylene and p-xylene. The highest removal rate constants at 0.8V were: 0.4±0.1days-1, 0.34±0.09days-1 and 0.16±0.02days-1, respectively. At the end of the experiment, the microbial communities were characterized by high throughput sequencing of the 16S rRNA gene. Microorganisms belonging to the families Desulfobulbaceae, Desulfuromonadaceae and Geobacteraceae were enriched on the anodes suggesting that both direct electron transfer and sulfur cycling occurred. The cathodic communities were dominated by the family Desulfomicrobiaceae that may be involved in hydrogen production.
Microbial Biotechnology | 2018
Enza Palma; Matteo Daghio; Andrea Franzetti; Marco Petrangeli Papini; Federico Aulenta
Groundwater contamination by petroleum hydrocarbons (PHs) is a widespread problem which poses serious environmental and health concerns. Recently, microbial electrochemical technologies (MET) have attracted considerable attention for remediation applications, having the potential to overcome some of the limiting factors of conventional in situ bioremediation systems. So far, field‐scale application of MET has been largely hindered by the limited availability of scalable system configurations. Here, we describe the ‘bioelectric well’ a bioelectrochemical reactor configuration, which can be installed directly within groundwater wells and can be applied for in situ treatment of organic contaminants, such as PHs. A laboratory‐scale prototype of the bioelectric well has been set up and operated in continuous‐flow regime with phenol as the model contaminant. The best performance was obtained when the system was inoculated with refinery sludge and the anode potentiostatically controlled at +0.2 V versus SHE. Under this condition, the influent phenol (25 mg l−1) was nearly completely (99.5 ± 0.4%) removed, with an average degradation rate of 59 ± 3 mg l−1 d and a coulombic efficiency of 104 ± 4%. Microbial community analysis revealed a remarkable enrichment of Geobacter species on the surface of the graphite anode, clearly pointing to a direct involvement of this electro‐active bacterium in the current‐generating and phenol‐oxidizing process.
Genome Announcements | 2015
Panagiotis Gkorezis; Francois Rineau; Jonathan D. Van Hamme; Andrea Franzetti; Matteo Daghio; Sofie Thijs; Nele Weyens; Jaco Vangronsveld
ABSTRACT We report the 3.7-Mb draft genome of Acinetobacter oleivorans strain PF1, a hydrocarbonoclastic Gram-negative bacterium in the class Gammaproteobacteria, isolated from poplar trees growing on a diesel-contaminated plume at the Ford Motor Company site in Genk, Belgium. Strain PF1 is a potent plant-growth promoter, useful for diesel fuel phytoremediation applications.
11th International Conference on Water Pollution: Modelling, Monitoring and Management | 2012
Sabrina Saponaro; Alessandro Careghini; Laura Romele; Elena Sezenna; Andrea Franzetti; Isabella Gandolfi; Matteo Daghio; Giuseppina Bestetti
Biobarriers (BBs) are a new type of in situ technology for the remediation of contaminated groundwater. In this work results of laboratory experiments on a BB system are discussed. First, a proper filling material for BB applications was selected among four possible granular materials (perlite, pumice, expanded clay, activated carbon), based on the physical-chemical properties affecting the BB performance and the bacterial adhesion capacity. Based on the results, pumice was selected as the filling material for the second part of the work, during which a laboratory column test was carried out without inoculation. Physical-chemical parameters (temperature, dissolved oxygen concentration, pH and specific electric conductivity) and pollutant concentrations (BTEX, MTBE, tert-butyl alcohol, 1,2,4-trimetylbenzene, naphthalene) were measured in water samples collected from eight piezometers uniformly distributed along the column length. Molecular microbiological analyses were also carried out on pumice before and after the treatment to assess the differences in the bacterial community. Different decreasing trends in the pollutant concentration along the column were observed for the different groups of contaminants that found explanation in the distribution of the different microbial populations throughout the column.