Matteo Di Giosia
University of Bologna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matteo Di Giosia.
Nature Communications | 2015
Paola Fantazzini; Stefano Mengoli; Luca Pasquini; Villiam Bortolotti; Leonardo Brizi; Manuel Mariani; Matteo Di Giosia; Simona Fermani; Bruno Capaccioni; Erik Caroselli; Fiorella Prada; Francesco Zaccanti; Oren Levy; Zvy Dubinsky; Jaap A. Kaandorp; Pirom Konglerd; Jörg U. Hammel; Yannicke Dauphin; Jean-Pierre Cuif; James C. Weaver; Katharina E. Fabricius; Wolfgang Wagermaier; Peter Fratzl; Giuseppe Falini; Stefano Goffredo
Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO2 vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 μm) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeletons structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean.
Marine Drugs | 2014
Alessandro Ianiro; Matteo Di Giosia; Simona Fermani; Chiara Samorì; Marianna Barbalinardo; Francesco Valle; Graziella Pellegrini; Fabio Biscarini; Francesco Zerbetto; Matteo Calvaresi; Giuseppe Falini
The squid pen (gladius) from the Loligo vulgaris was used for preparation of β-chitin materials characterized by different chemical, micro- and nano-structural properties that preserved, almost completely the macrostructural and the mechanical ones. The β-chitin materials obtained by alkaline treatment showed porosity, wettability and swelling that are a function of the duration of the treatment. Microscopic, spectroscopic and synchrotron X-ray diffraction techniques showed that the chemical environment of the N-acetyl groups of the β-chitin chains changes after the thermal alkaline treatment. As a consequence, the crystalline packing of the β-chitin is modified, due to the intercalation of water molecules between β-chitin sheets. Potential applications of these β-chitin materials range from the nanotechnology to the regenerative medicine. The use of gladii, which are waste products of the fishing industry, has also important environmental implications.
Chemistry: A European Journal | 2016
Lorenzo Milli; Nicola Zanna; Andrea Merlettini; Matteo Di Giosia; Matteo Calvaresi; Maria Letizia Focarete; Claudia Tomasini
We present herein the preparation of four different hydrogels based on the pseudopeptide gelator Fmoc-l-Phe-d-Oxd-OH (Fmoc=fluorenylmethyloxycarbonyl), either by changing the gelator concentration or adding graphene oxide (GO) to the water solution. The hydrogels have been analysed by rheological studies that demonstrated that pure hydrogels are slightly stronger compared to GO-loaded hydrogels. Then the hydrogels efficiency to trap the cationic methylene blue (MB) and anionic eosin Y (EY) dyes has been analyzed. MB is efficiently trapped by both the pure hydrogel and the GO-loaded hydrogel through π-π interactions and electrostatic interactions. In contrast, the removal of the anionic EY is achieved in less satisfactory yields, due to the unfavourable electrostatic interactions between the dye, the gelator and GO.
Advanced Healthcare Materials | 2015
Giulia Magnabosco; Matteo Di Giosia; Iryna Polishchuk; Eva Weber; Simona Fermani; Andrea Bottoni; Francesco Zerbetto; Pier Giuseppe Pelicci; Boaz Pokroy; Stefania Rapino; Giuseppe Falini; Matteo Calvaresi
Doxorubicin (DOX)/CaCO3 single crystals act as pH responsive drug carrier. A biomimetic approach demonstrates that calcite single crystals are able, during their growth in the presence of doxorubicin, to entrap drug molecules inside their lattice along specific crystallographic directions. Alterations in lattice dimensions and microstructural parameters are determined by means of high-resolution synchrotron powder diffraction measurements. Confocal microscopy confirms that doxorubicin is uniformly embedded in the crystal and is not simply adsorbed on the crystal surface. A slow release of DOX was obtained preferentially in the proximity of the crystals, targeting cancer cells.
Journal of the Royal Society Interface | 2015
Luca Pasquini; Alan Molinari; Paola Fantazzini; Yannicke Dauphen; Jean-Pierre Cuif; Oren Levy; Zvy Dubinsky; Erik Caroselli; Fiorella Prada; Stefano Goffredo; Matteo Di Giosia; Michela Reggi; Giuseppe Falini
Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Youngs modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the sections orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections.
Materials | 2018
Matteo Di Giosia; Francesco Valle; Andrea Cantelli; Andrea Bottoni; Francesco Zerbetto; Matteo Calvaresi
The high hydrophobicity of fullerenes and the resulting formation of aggregates in aqueous solutions hamper the possibility of their exploitation in many technological applications. Noncovalent bioconjugation of fullerenes with proteins is an emerging approach for their dispersion in aqueous media. Contrary to covalent functionalization, bioconjugation preserves the physicochemical properties of the carbon nanostructure. The unique photophysical and photochemical properties of fullerenes are then fully accessible for applications in nanomedicine, sensoristic, biocatalysis and materials science fields. However, proteins are not universal carriers. Their stability depends on the biological conditions for which they have evolved. Here we present two model systems based on pepsin and trypsin. These proteins have opposite net charge at physiological pH. They recognize and disperse C60 in water. UV-Vis spectroscopy, zeta-potential and atomic force microscopy analysis demonstrates that the hybrids are well dispersed and stable in a wide range of pH’s and ionic strengths. A previously validated modelling approach identifies the protein-binding pocket involved in the interaction with C60. Computational predictions, combined with experimental investigations, provide powerful tools to design tailor-made C60@proteins bioconjugates for specific applications.
ChemPhysChem | 2014
Lorenzo Moro; Matteo Di Giosia; Matteo Calvaresi; Evangelos Bakalis; Francesco Zerbetto
A general framework is provided that makes possible the estimation of time-dependent properties of a stochastic system moving far from equilibrium. The process is investigated and discussed in general terms of nonequilibrium thermodynamics. The approach is simple and can be exploited to gain insight into the dynamics of any molecular-level machine. As a case study, the dynamics of an artificial molecular rotary motor, similar to the inversion of a helix, which drives the motor from a metastable state to equilibrium, are examined. The energy path that the motor walks was obtained from the results of atomistic calculations. The motor undergoes unidirectional rotation and its entropy, internal energy, free energy, and net exerted force are given as a function of time, starting from the solution of Smoluchowskis equation. The rather low value of the organization index, that is, the ratio of the work done by the particle against friction during the unidirectional motion per available free energy, reveals that the motion is mainly subject to randomness, and the amount of energy converted to heat due to the directional motion is very small.
The Scientific World Journal | 2013
Francesco Giangreco; Eiji Yamamoto; Yoshinori Hirano; Milan Hodoscek; Volker Knecht; Matteo Di Giosia; Matteo Calvaresi; Francesco Zerbetto; Kenji Yasuoka; Tetsu Narumi; Masato Yasui; Siegfried Höfinger
Four different force fields are examined for dynamic characteristics using cholesterol as a case study. The extent to which various types of internal degrees of freedom become thermodynamically relevant is evaluated by means of principal component analysis. More complex degrees of freedom (angle bending, dihedral rotations) show a trend towards force field independence. Moreover, charge assignments for membrane-embedded compounds are revealed to be critical with significant impact on biological reasoning.
Nanoscale | 2018
Matteo Di Giosia; Paul H. H. Bomans; Andrea Bottoni; Andrea Cantelli; Giuseppe Falini; Paola Franchi; Giuseppe Guarracino; Heiner Friedrich; Marco Lucarini; Francesco Paolucci; Stefania Rapino; Nico A. J. M. Sommerdijk; Alice Soldà; Francesco Valle; Francesco Zerbetto; Matteo Calvaresi
Hybrid systems have great potential for a wide range of applications in chemistry, physics and materials science. Conjugation of a biosystem to a molecular material can tune the properties of the components or give rise to new properties. As a workhorse, here we take a C60@lysozyme hybrid. We show that lysozyme recognizes and disperses fullerene in water. AFM, cryo-TEM and high resolution X-ray powder diffraction show that the C60 dispersion is monomolecular. The adduct is biocompatible, stable in physiological and technologically-relevant environments, and easy to store. Hybridization with lysozyme preserves the electrochemical properties of C60. EPR spin-trapping experiments show that the C60@lysozyme hybrid produces ROS following both type I and type II mechanisms. Due to the shielding effect of proteins, the adduct generates significant amounts of 1O2 also in aqueous solution. In the case of type I mechanism, the protein residues provide electrons and the hybrid does not require addition of external electron donors. The preparation process and the properties of C60@lysozyme are general and can be expected to be similar to other C60@protein systems. It is envisaged that the properties of the C60@protein hybrids will pave the way for a host of applications in nanomedicine, nanotechnology, and photocatalysis.
Dyes and Pigments | 2016
Andrea Cantelli; Giulia Battistelli; Gloria Guidetti; Jeannette Manzi; Matteo Di Giosia; Marco Montalti