Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew A. Caporizzo is active.

Publication


Featured researches published by Matthew A. Caporizzo.


Science | 2016

Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes

Patrick Robison; Matthew A. Caporizzo; Hossein Ahmadzadeh; Alexey I. Bogush; Christina Yingxian Chen; Kenneth B. Margulies; Vivek B. Shenoy; Benjamin L. Prosser

A close-up view of cardiac cell mechanics Heart cells contain a very well-organized array of cytoskeletal elements, including actin and microtubules that help them to perform their mechanical functions. Robison et al. used an advanced imaging approach to study the inner workings of mouse cardiac myocytes in real time. They observed microtubule “buckling” under contractile force in beating cardiomyocytes. This buckling was regulated by interaction with desmin and by the tubulin tyrosination state. The findings suggest a role for stable detyrosinated microtubules whose buckling under tension contributes to cardiac muscle strength. Science, this issue p. 10.1126/science.aaf0659 Posttranslational detyrosination of the microtubule network influences the mechanical properties of heart cells. INTRODUCTION Along with its well-documented role as a track for cargo transport, the microtubule (MT) cytoskeleton is linked to diverse structural and signaling roles in the cardiac myocyte. MTs can facilitate the rapid transmission of mechanical signals to intracellular effectors, a process termed mechanotransduction. A proliferated MT network may also provide a mechanical resistance to cardiac contraction in certain disease states. Yet our understanding of how MTs resist compression and transmit mechanical signals has been impaired by a lack of direct observation and by the unpredictable effects of blunt pharmacological tools. RATIONALE Direct observation of MT mechanical behavior during contraction is the most straightforward way to elucidate the mechanisms underlying MT contributions to heart function. Advances in imaging have made this possible at temporal and spatial resolutions that permit quantification of MT geometry during the contraction cycle. Furthermore, recent evidence suggests that posttranslational modification of the microtubule network, specifically “detyrosination,” regulates cardiac mechano-transduction. This raises the question of whether detyrosination alters how microtubules respond to the changing mechanical loads inherent to each cardiac cycle. To answer these questions, we used advanced imaging techniques to explore MT behavior in beating murine cardiomyocytes. RESULTS During contraction, MTs must somehow accommodate the changing geometry of the myocyte. In a typical myocyte, this was accomplished by deforming into a sinusoidal buckled configuration that returned to an identical resting configuration after each beat. The periodic nature of these buckles coincided with the repeating contractile units of the cardiomyocyte known as sarcomeres, which suggested a direct interaction. Desmin intermediate filaments were identified as a key component of an anchoring complex that links MTs to the sarcomere and imparts structural organization to the MT network. The physical link between microtubules and the sarcomere was highly dependent on detyrosination. In myocytes where detyrosination was suppressed, MTs often accommodated the contraction by sliding past each other rather than buckling as the sarcomere shortened. Disrupting the MT-sarcomere interaction allowed the sarcomere to shorten farther and faster, as well as decreased overall stiffness. Conversely, promoting detyrosination was sufficient to increase myocyte stiffness and impede the contraction of the myocyte. Consistently, clinical data showed a direct correlation between excess detyrosination and functional decline in patients with hypertrophic cardiomyopathy. CONCLUSION Thus, microtubules can provide mechanical resistance to the myocyte through interactions with the sarcomere, forming load-bearing spring elements in parallel with the contractile apparatus. These interactions are mediated by a detyrosination-dependent association with desmin that regulates myocyte stiffness and contractility. Excess detyrosination promotes the interaction between MTs and the sarcomere, which increases resistance to contraction and may contribute to reductions in cardiac function in certain disease states. MTs in the beating heart. When a cardiomyocyte (A) is compressed (B), as occurs during systolic contraction, MTs buckle under load. In a typical myocyte (C), detyrosinated MTs are mechanically coupled to the sarcomere and buckle during contraction (D). When detyrosination is reduced (E), this interaction is disrupted and MTs buckle less, which allows sarcomeres to shorten and stretch with less resistance. The microtubule (MT) cytoskeleton can transmit mechanical signals and resist compression in contracting cardiomyocytes. How MTs perform these roles remains unclear because of difficulties in observing MTs during the rapid contractile cycle. Here, we used high spatial and temporal resolution imaging to characterize MT behavior in beating mouse myocytes. MTs deformed under contractile load into sinusoidal buckles, a behavior dependent on posttranslational “detyrosination” of α-tubulin. Detyrosinated MTs associated with desmin at force-generating sarcomeres. When detyrosination was reduced, MTs uncoupled from sarcomeres and buckled less during contraction, which allowed sarcomeres to shorten and stretch with less resistance. Conversely, increased detyrosination promoted MT buckling, stiffened the myocyte, and correlated with impaired function in cardiomyopathy. Thus, detyrosinated MTs represent tunable, compression-resistant elements that may impair cardiac function in disease.


Langmuir | 2014

Gold Nanorod Linking to Control Plasmonic Properties in Solution and Polymer Nanocomposites

Robert C. Ferrier; Hyun-Su Lee; Michael J. A. Hore; Matthew A. Caporizzo; David M. Eckmann; Russell J. Composto

A novel, solution-based method is presented to prepare bifunctional gold nanorods (B-NRs), assemble B-NRs end-to-end in various solvents, and disperse linked B-NRs in a polymer matrix. The B-NRs have poly(ethylene glycol) grafted along its long axis and cysteine adsorbed to its ends. By controlling cysteine coverage, bifunctional ligands or polymer can be end-grafted to the AuNRs. Here, two dithiol ligands (C6DT and C9DT) are used to link the B-NRs in organic solvents. With increasing incubation time, the nanorod chain length increases linearly as the longitudinal surface plasmon resonance shifts toward lower adsorption wavelengths (i.e., red shift). Analogous to step-growth polymerization, the polydispersity in chain length also increases. Upon adding poly(ethylene glycol) or poly(methyl methacrylate) to chloroform solution with linked B-NR, the nanorod chains are shown to retain end-to-end linking upon spin-casting into PEO or PMMA films. Using quartz crystal microbalance with dissipation (QCM-D), the mechanism of nanorod linking is investigated on planar gold surfaces. At submonolayer coverage of cysteine, C6DT molecules can insert between cysteines and reach an areal density of 3.4 molecules per nm2. To mimic the linking of Au NRs, this planar surface is exposed to cysteine-coated Au nanoparticles, which graft at 7 NPs per μm2. This solution-based method to prepare, assemble, and disperse Au nanorods is applicable to other nanorod systems (e.g., CdSe) and presents a new strategy to assemble anisotropic particles in organic solvents and polymer coatings.


Nanobiomedicine | 2015

Strain-Rate Dependence of Elastic Modulus Reveals Silver Nanoparticle Induced Cytotoxicity

Matthew A. Caporizzo; Charles Roco; Maria Carme Coll Ferrer; Martha E. Grady; Emmabeth Parrish; David M. Eckmann; Russell J. Composto

Force-displacement measurements are taken at different rates with an atomic force microscope to assess the correlation between cell health and cell viscoelasticity in THP-1 cells that have been treated with a novel drug carrier. A variable indentation-rate viscoelastic analysis, VIVA, is employed to identify the relaxation time of the cells that are known to exhibit a frequency dependent stiffness. The VIVA agrees with a fluorescent viability assay. This indicates that dextran-lysozyme drug carriers are biocompatible and deliver concentrated toxic material (rhodamine or silver nanoparticles) to the cytoplasm of THP-1 cells. By modelling the frequency dependence of the elastic modulus, the VIVA provides three metrics of cytoplasmic viscoelasticity: a low frequency modulus, a high frequency modulus and viscosity. The signature of cytotoxicity by rhodamine or silver exposure is a frequency independent twofold increase in the elastic modulus and cytoplasmic viscosity, while the cytoskeletal relaxation time remains unchanged. This is consistent with the known toxic mechanism of silver nanoparticles, where metabolic stress causes an increase in the rigidity of the cytoplasm. A variable indentation-rate viscoelastic analysis is presented as a straightforward method to promote the self-consistent comparison between cells. This is paramount to the development of early diagnosis and treatment of disease.


Nature Medicine | 2018

Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure

Christina Yingxian Chen; Matthew A. Caporizzo; Kenneth C Bedi; Alexia Vite; Alexey I. Bogush; Patrick Robison; Julie Heffler; Alex K. Salomon; Neil A. Kelly; Apoorva Babu; Michael P. Morley; Kenneth B. Margulies; Benjamin L. Prosser

Detyrosinated microtubules provide mechanical resistance that can impede the motion of contracting cardiomyocytes. However, the functional effects of microtubule detyrosination in heart failure or in human hearts have not previously been studied. Here, we utilize mass spectrometry and single-myocyte mechanical assays to characterize changes to the cardiomyocyte cytoskeleton and their functional consequences in human heart failure. Proteomic analysis of left ventricle tissue reveals a consistent upregulation and stabilization of intermediate filaments and microtubules in failing human hearts. As revealed by super-resolution imaging, failing cardiomyocytes are characterized by a dense, heavily detyrosinated microtubule network, which is associated with increased myocyte stiffness and impaired contractility. Pharmacological suppression of detyrosinated microtubules lowers the viscoelasticity of failing myocytes and restores 40–50% of lost contractile function; reduction of microtubule detyrosination using a genetic approach also softens cardiomyocytes and improves contractile kinetics. Together, these data demonstrate that a modified cytoskeletal network impedes contractile function in cardiomyocytes from failing human hearts and that targeting detyrosinated microtubules could represent a new inotropic strategy for improving cardiac function.Post-translational modification of microtubules by detyrosination is prevalent in failing human cardiomyocytes and inhibits cardiomyocyte contraction, suggesting a new therapeutic strategy for improving heart function.


Journal of Chemical Physics | 2017

Network confinement and heterogeneity slows nanoparticle diffusion in polymer gels

Emmabeth Parrish; Matthew A. Caporizzo; Russell J. Composto

Nanoparticle (NP) diffusion was measured in polyacrylamide gels (PAGs) with a mesh size comparable to the NP size, 21 nm. The confinement ratio (CR), NP diameter/mesh size, increased from 0.4 to 3.8 by increasing crosslinker density and from 0.4 to 2.1 by adding acetone, which collapsed the PAGs. In all gels, NPs either became localized, moving less than 200 nm, diffused microns, or exhibited a combination of these behaviors, as measured by single particle tracking. Mean squared displacements (MSDs) of mobile NPs decreased as CR increased. In collapsed gels, the localized NP population increased and MSD of mobile NPs decreased compared to crosslinked PAGs. For all CRs, van Hove distributions exhibited non-Gaussian displacements, consistent with intermittent localization of NPs. The non-Gaussian parameter increased from a maximum of 1.5 for crosslinked PAG to 5 for collapsed PAG, consistent with greater network heterogeneity in these gels. Diffusion coefficients decreased exponentially as CR increased for crosslinked gels; however, in collapsed gels, the diffusion coefficients decreased more strongly, which was attributed to network heterogeneity. Collapsing the gel resulted in an increasingly tortuous pathway for NPs, slowing diffusion at a given CR. Understanding how gel structure affects NP mobility will allow the design and enhanced performance of gels that separate and release molecules in membranes and drug delivery platforms.


Langmuir | 2012

Nanoscale topography mediates the adhesion of F-actin.

Matthew A. Caporizzo; Yujie Sun; Yale E. Goldman; Russell J. Composto

Using a controllable nanoengineered surface that alters the dynamics of filamentous actin (F-actin) adhesion, we studied the tunability of biomolecular surface attachment. By grafting aminated nanoparticles, NPs, with diameters ranging from 12 to 85 nm to a random copolymer film, precise control over surface roughness parameters is realized. The ability to selectively generate monodisperse or polydisperse features of varying size and areal density leads to immobilized, side-on wobbly, or end-on F-actin binding as characterized by total internal reflection fluorescence (TIRF) microscopy. The interaction between the surface and actin is explained by a worm-like chain model that balances the bending energy penalty required for actin to conform to topographical features with the electrostatic attraction engineered into the surface. A Myosin V motility assay demonstrates that electrostatically immobilized actin retains its ability to direct myosin motion, indicating that nanoengineered surfaces are attractive candidates for biomolecular device fabrication.


Biophysical Journal | 2018

The Antiparallel Dimerization of Myosin X Imparts Bundle Selectivity for Processive Motility

Matthew A. Caporizzo; Claire E. Fishman; Osamu Sato; Ryan M. Jamiolkowski; Mitsuo Ikebe; Yale E. Goldman

Myosin X is an unconventional actin-based molecular motor involved in filopodial formation, microtubule-actin filament interaction, and cell migration. Myosin X is an important component of filopodia regulation, localizing to tips of growing filopodia by an unclear targeting mechanism. The native α-helical dimerization domain of myosin X is thought to associate with antiparallel polarity of the two amino acid chains, making myosin X the only myosin that is currently considered to form antiparallel dimers. This study aims to determine if antiparallel dimerization of myosin X imparts selectivity toward actin bundles by comparing the motility of parallel and antiparallel dimers of myosin X on single and fascin-bundled actin filaments. Antiparallel myosin X dimers exhibit selective processivity on fascin-bundled actin and are only weakly processive on single actin filaments below saturating [ATP]. Artificial forced parallel dimers of myosin X are robustly processive on both single and bundled actin, exhibiting no selectivity. To determine the relationship between gating of the reaction steps and observed differences in motility, a mathematical model was developed to correlate the parameters of motility with the biochemical and mechanical kinetics of the dimer. Results from the model, constrained by experimental data, suggest that the probability of binding forward, toward the barbed end of the actin filament, is lower in antiparallel myosin X on single actin filaments compared to fascin-actin bundles and compared to constructs of myosin X with parallel dimerization.


Biophysical Journal | 2018

Microtubules Provide a Viscoelastic Resistance to Myocyte Motion

Matthew A. Caporizzo; Christina Yingxian Chen; Alexander Koizumi Salomon; Kenneth B. Margulies; Benjamin L. Prosser

BACKGROUND Microtubules (MTs) buckle and bear load during myocyte contraction, a behavior enhanced by post-translational detyrosination. This buckling suggests a spring-like resistance against myocyte shortening, which could store energy and aid myocyte relaxation. Despite this visual suggestion of elastic behavior, the precise mechanical contribution of the cardiac MT network remains to be defined. METHODS Here we experimentally and computationally probe the mechanical contribution of stable MTs and their influence on myocyte function. We use multiple approaches to interrogate viscoelasticity and cell shortening in primary murine myocytes in which either MTs are depolymerized or detyrosination is suppressed and use the results to inform a mathematical model of myocyte viscoelasticity. RESULTS MT ablation by colchicine concurrently enhances both the degree of shortening and speed of relaxation, a finding inconsistent with simple spring-like MT behavior and suggestive of a viscoelastic mechanism. Axial stretch and transverse indentation confirm that MTs increase myocyte viscoelasticity. Specifically, increasing the rate of strain amplifies the MT contribution to myocyte stiffness. Suppressing MT detyrosination with parthenolide or via overexpression of tubulin tyrosine ligase has mechanical consequences that closely resemble colchicine, suggesting that the mechanical impact of MTs relies on a detyrosination-dependent linkage with the myocyte cytoskeleton. Mathematical modeling affirms that alterations in cell shortening conferred by either MT destabilization or tyrosination can be attributed to internal changes in myocyte viscoelasticity. CONCLUSIONS The results suggest that the cardiac MT network regulates contractile amplitudes and kinetics by acting as a cytoskeletal shock-absorber, whereby MTs provide breakable cross-links between the sarcomeric and nonsarcomeric cytoskeleton that resist rapid length changes during both shortening and stretch.


ACS Applied Materials & Interfaces | 2017

Competitive Adsorption of Polyelectrolytes onto and into Pellicle-Coated Hydroxyapatite Investigated by QCM-D and Force Spectroscopy

Hyun-Su Lee; Carl P. Myers; Lynette Zaidel; Prathima C. Nalam; Matthew A. Caporizzo; Carlo A. Daep; David M. Eckmann; James G. Masters; Russell J. Composto

A current effort in preventive dentistry is to inhibit surface attachment of bacteria using antibacterial polymer coatings on the tooth surface. For the antibacterial coatings, the physisorption of anionic and cationic polymers directly onto hydroxyapatite (HA) and saliva-treated HA surfaces was studied using quartz crystal microbalance, force spectroscopy, and atomic force microscopy. First, single species adsorption is shown to be stronger on HA surfaces than on silicon oxide surfaces for all polymers (i.e., Gantrez, sodium hyaluronate (NaHa), and poly(allylamine-co-allylguanidinium) (PAA-G75)). It is observed through pH dependence of Gantrez, NaHa, and PAA-G75 adsorption on HA surfaces that anionic polymers swell at high pH and collapse at low pH, whereas cationic polymers behave in the opposite fashion. Thicknesses of Gantrez, NaHa, and PAA-G75 are 52 nm (46 nm), 35 nm (11 nm), and 6 nm (54 nm) at pH 7 (3.5), respectively. Second, absorption of charged polymer is followed by absorption of the oppositely charged polymer. Upon exposure of the anionic polymer layers, Gantrez and NaHa, to the cationic polymer, PAA-G75, films collapse from 52 to 8 nm and 35 to 11 nm, respectively. This decrease in film thickness is attributed to the electrostatic cross-linking between anionic and cationic polymers. Third, for HA surfaces pretreated with artificial saliva (AS), the total thickness decreases from 25 to 16 nm upon exposure to PAA-G75. Force spectroscopy is used to further investigate the PAA-G75/AS coating. The results show that the interaction between a negatively charged colloidal bead and the AS surface is strongly repulsive, whereas PAA-G75/AS is attractive but varies across the surface. Additionally, AFM studies show that AS/HA is smooth with a RMS roughness of 1.7 nm, and PAA-G75-treated AS/HA is rough (RMS roughness of 5.4 nm) with patches of polymer distributed across the surface with an underlying coating. The high roughness of PAA-G75 treated AS/HA is attributed to the strong adsorption of the relatively small PAA-G75 onto the heterogeneously distributed negatively charged AS surface. In addition, uptake of PAA-G75 by pellicle layer (saliva-treated HA surface) is observed, and the adsorbed amount of PAA-G75 on/into pellicle layer is ∼2 times more than that on/into AS layer. These studies show that polymer adsorption onto HA and saliva-coated HA depends strongly on the polymer type and size and that there is an electrostatic interaction between polymer and saliva and/or oppositely charged polymers that stabilizes the coatings on HA. Lastly, assessing the viability of the adherent bacteria collected from the PAA-G75-coated surfaces showed a significant reduction (∼93%) in bacterial viability when compared to bacteria collected from untreated and Gantrez-coated HA. These results suggest the potential antimicrobial activity of PAA-G75.


Langmuir | 2015

Hierarchical Nanoparticle Topography in Amphiphilic Copolymer Films Controlled by Thermodynamics and Dynamics

Matthew A. Caporizzo; R. M. Ezzibdeh; Russell J. Composto

This study systematically investigates how polymer composition changes nanoparticle (NP) grafting and diffusion in solvated random copolymer thin films. By thermal annealing from 135 to 200 °C, thin films with a range of hydrophobicity are generated by varying acrylic acid content from 2% (SAA2) to 29% (SAA29). Poly(styrene-random-tert butyl acrylate) films, 100 nm thick, that are partially converted to poly(styrene-random-acrylic acid), SAA, reversibly swell in ethanol solutions containing amine-functionalized SiO2 nanoparticles with a diameter of 45 nm. The thermodynamics and kinetics of NP grafting are directly controlled by the AA content in the SAA films. At low AA content, namely SAA4, NP attachment saturates at a monolayer, consistent with a low solubility of NPs in SAA4 due to a weakly negative χ parameter. When the AA content exceeds 4%, NPs sink into the film to form multilayers. These films exhibit hierarchical surface roughness with a RMS roughness greater than the NP size. Using a quartz crystal microbalance, NP incorporation in the film is found to saturate after a mass equivalence of about 3 close-packed layers of NPs have been incorporated within the SAA. The kinetics of NP grafting is observed to scale with AA content. The surface roughness is greatest at intermediate times (5-20 min) for SAA13 films, which also exhibit superhydrophobic wetting. Because clustering and aggregation of the NPs within SAA29 films reduce film transparency, SAA13 films provide both maximum hydrophobicity and transparency. The method in this study is widely applicable because it can be applied to many substrate types, can cover large areas, and retains the amine functionality of the particles which allows for subsequent chemical modification.

Collaboration


Dive into the Matthew A. Caporizzo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Eckmann

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yale E. Goldman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Robison

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Alexey I. Bogush

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kenneth C Bedi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Emmabeth Parrish

Applied Science Private University

View shared research outputs
Researchain Logo
Decentralizing Knowledge