Matthew A. Lauber
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew A. Lauber.
Analytical Chemistry | 2015
Matthew A. Lauber; Ying-Qing Yu; Darryl W. Brousmiche; Zhengmao Hua; Stephan M. Koza; Paula Magnelli; Ellen Guthrie; Christopher H. Taron; Kenneth J. Fountain
N-glycosylation of proteins is now routinely characterized and monitored because of its significance to the detection of disease states and the manufacturing of biopharmaceuticals. At the same time, hydrophilic interaction chromatography (HILIC) has emerged as a powerful technology for N-glycan profiling. Sample preparation techniques for N-glycan HILIC analyses have however tended to be laborious or require compromises in sensitivity. To address these shortcomings, we have developed an N-glycan labeling reagent that provides enhanced fluorescence response and MS sensitivity for glycan detection and have also simplified the process of preparing a sample for analysis. The developed labeling reagent rapidly reacts with glycosylamines upon their release from glycoproteins. Within a 5 min reaction, enzymatically released N-glycans are labeled with this reagent comprised of an NHS-carbamate reactive group, a quinoline fluorophore, and a tertiary amine for enhancing ESI+ MS ionization. To further expedite the released N-glycan sample preparation, rapid tagging has been integrated with a fast PNGase F deglycosylation procedure that achieves complete deglycosylation of a diverse set of glycoproteins in approximately 10 min. Moreover, a technique for HILIC-SPE of the labeled glycans has been developed to provide quantitative recovery and facilitate immediate HILIC analysis of the prepared samples. The described approach makes it possible to quickly prepare N-glycan samples and to incorporate the use of a fluorescence and MS sensitivity enhancing labeling reagent. In demonstration of these new capabilities, we have combined the developed sample preparation techniques with UHPLC HILIC chromatography and high sensitivity mass spectrometry to thoroughly detail the N-glycan profile of a monoclonal antibody.
Journal of Proteome Research | 2011
Matthew A. Lauber; James P. Reilly
The structure of the Escherichia coli ribosome, a 2.5 MDa ribonucleoprotein complex containing more than 50 proteins, was probed using the novel amidinating cross-linker diethyl suberthioimidate (DEST) and mass spectrometry. Peptide cross-links derived from this complex structure were identified at high confidence (FDR 0.8%) from precursor mass measurements and collision-induced dissociation (CID) fragmentation spectra. The acquired cross-linking data were found to be in excellent agreement with the crystal structure of the E. coli ribosome. DEST cross-links are particularly amenable to strong cation exchange (SCX) chromatography, facilitating a large-scale analysis. SCX enrichment and fractionation were shown to increase the number of cross-link spectra matches in our analysis 10-fold. Evidence is presented that these techniques can be used to study complex interactomes.
Analytical Chemistry | 2010
Matthew A. Lauber; James P. Reilly
A novel bifunctional thioimidate cross-linking reagent (diethyl suberthioimidate) that modifies amines without sacrificing their native basicity is developed. Intermolecular cross-linking of neurotensin and intramolecular cross-linking of cytochrome c under physiological conditions is investigated with this reagent. Because it does not perturb the electrostatic properties of a protein, it is unlikely to lead to artifactual conclusions about native protein structure. The interpeptide cross-links formed with this reagent are easily separated from other tryptic fragments using strong cation exchange chromatography, and they have a readily identified mass spectrometric signature. The use of this novel amidinating protein cross-linking reagent holds great promise for efficient, large-scale structural analysis of complex systems.
Molecular & Cellular Proteomics | 2012
Matthew A. Lauber; Juri Rappsilber; James P. Reilly
Ribosomal protein S1 has been shown to be a significant effector of prokaryotic translation. The protein is in fact capable of efficiently initiating translation, regardless of the presence of a Shine-Dalgarno sequence in mRNA. Structural insights into this process have remained elusive, as S1 is recalcitrant to traditional techniques of structural analysis, such as x-ray crystallography. Through the application of protein cross-linking and high resolution mass spectrometry, we have detailed the ribosomal binding site of S1 and have observed evidence of its dynamics. Our results support a previous hypothesis that S1 acts as the mRNA catching arm of the prokaryotic ribosome. We also demonstrate that in solution the major domains of the 30S subunit are remarkably flexible, capable of moving 30–50Å with respect to one another.
Analytical Chemistry | 2015
Catalin E. Doneanu; Malcolm Anderson; Brad J. Williams; Matthew A. Lauber; Asish Chakraborty; Weibin Chen
The enormous dynamic range of proteinaceous species present in protein biotherapeutics poses a significant challenge for current mass spectrometry (MS)-based methods to detect low-abundance HCP impurities. Previously, an HCP assay based on two-dimensional chromatographic separation (high pH/low pH) coupled to high-resolution quadrupole time-of-flight (QTOF) mass spectrometry and developed in the authors laboratory has been shown to achieve a detection limit of about 50 ppm (parts per milion) for the identification and quantification of HCPs present in monoclonal antibodies following Protein A purification.1 To improve the HCP detection limit we have explored the utility of several new analytical techniques for HCP analysis and thereby developed an improved liquid chromatography-mass spectrometry (LC-MS) methodology for enhanced detection of HCPs. The new method includes (1) the use of a new charge-surface-modified (CSH) C18 stationary phase to mitigate the challenges of column saturation, peak tailing, and distortion that are commonly observed in the HCP analysis; (2) the incorporation of traveling-wave ion mobility (TWIM) separation of coeluting peptide precursors, and (3) the improvement of fragmentation efficiency of low-abundance HCP peptides by correlating the collision energy used for precursor fragmentation with their mobility drift time. As a result of these improvements, the detection limit of the new methodology was greatly improved, and HCPs present at a concentration as low as 1 ppm (1 ng HCP/mg mAb) were successfully identified and quantified. The newly developed method was applied to analyze two high-purity mAbs (NIST mAb and Infliximab) expressed in a murine cell line. For both samples, low-abundance HCPs (down to 1 ppm) were confidently identified, and the identities of the HCPs were further confirmed by targeted MS/MS experiments. In addition, the performance of the assay was evaluated by an interlaboratory study in which three independent laboratories performed the same HCP assay on the mAb sample. The reproducibility of this assay is also discussed.
Journal of Proteome Research | 2009
Matthew A. Lauber; William E. Running; James P. Reilly
Ribosomal proteins of the model gram-positive bacterium B. subtilis 168 were extensively characterized in a proteomic study. Mass spectra of the 52 proteins expected to be constitutive components of the 70S ribosome were recorded. Peptide MS/MS analysis with an average sequence coverage of 85% supported the identification of these proteins and facilitated the unambiguous assignment of post-translational modifications, including the methylation of S7, L11, and L16 and the N-terminal acetylation of S9. In addition, the high degree of structural homology between B. subtilis and other eubacterial ribosomal proteins was demonstrated through chemical labeling with S-methylthioacetimidate. One striking difference from previous characterizations of bacterial ribosomal proteins is that dozens of protein masses were found to be in error and not easily accounted for by post-translational modifications. This, in turn, led us to discover an inordinate number of sequencing errors in the reference genome of B. subtilis 168. We have found that these errors have been corrected in a recently revised version of the genome.
Analytical Chemistry | 2017
Valentina D’Atri; Szabolcs Fekete; Alain Beck; Matthew A. Lauber; Davy Guillarme
The development and approval processes of biosimilar mAbs depend on their comparability to originators. Therefore, analytical comparisons are required to assess structural features and post-translational modifications (PTM) and thereby minimize the risk of being clinically meaningful differences between biosimilar and originator drug products. The glycosylation pattern of mAbs is considered to be an important critical quality attribute (CQA), and several analytical approaches have been proposed that facilitate characterizing and monitoring a glycosylation profile, albeit mainly at a glycan and glycopeptide level of analysis. In this study, we demonstrate the utility of hydrophilic interaction chromatography (HILIC) hyphenated with mass spectrometry (MS) for the qualitative profiling of glycosylation patterns at the protein level, by comparing originator and biosimilars mAbs (Remicade/Remsina/Inflectra, Herceptin/Trastuzumab B, and Erbitux/Cetuximab B) using a middle-up approach. We demonstrate the ability of HILIC to resolve hydrophilic variants of protein biopharmaceuticals at the middle-up level of analysis, its complementarity to reversed phase liquid chromatography, and its hyphenation to MS. HILIC features combined to MS make a powerful analytical tool for the comparison of originator and biosimilar mAbs that could eventually be applied in routine analyses for quality control.
Analytical Chemistry | 2013
Matthew A. Lauber; Stephan M. Koza; Scott A. McCall; Bonnie A. Alden; Pamela C. Iraneta; Kenneth J. Fountain
Ionic analytes, such as peptides, can be challenging to separate by reverse-phase chromatography with optimal efficiency. They tend, for instance, to exhibit poor peak shapes, particularly when eluted with mobile phases preferred for electrospray ionization mass spectrometry. We demonstrate that a novel charged-surface C18 stationary phase alleviates some of the challenges associated with reverse-phase peptide separations. This column chemistry, known as CSH (charged-surface hybrid) C18, improves upon an already robust organosilica hybrid stationary phase, BEH (ethylene-bridged hybrid) C18. Based on separations of a nine-peptide standard, CSH C18 was found to exhibit improved loadability, greater peak capacities, and unique selectivity compared to BEH C18. Its performance was also seen to be significantly less dependent on TFA-ion pairing, making it ideal for MS applications where high sensitivity is desired. These performance advantages were evaluated through application to peptide mapping, wherein CSH C18 was found to aid the development of a high-resolution, high-sensitivity LC-UV-MS peptide mapping method for the therapeutic antibody, trastuzumab. From these results, the use of a C18 stationary phase with a charged surface, such as CSH C18, holds significant promise for facilitating challenging peptide analyses.
Analytical Chemistry | 2011
Feng-Ming James Chang; Matthew A. Lauber; William E. Running; James P. Reilly; David P. Giedroc
Selective chemical modification of protein side chains coupled with mass spectrometry is often most informative when used to compare residue-specific reactivities in a number of functional states or macromolecular complexes. Herein, we develop ratiometric pulse-chase amidination mass spectrometry (rPAm-MS) as a site-specific probe of lysine reactivities at equilibrium using the Cu(I)-sensing repressor CsoR from Bacillus subtilis as a model system. CsoR in various allosteric states was reacted with S-methyl thioacetimidate (SMTA) for pulse time, t, and chased with excess of S-methyl thiopropionimidate (SMTP) (Δ = 14 amu), quenched and digested with chymotrypsin or Glu-C protease, and peptides were quantified by high-resolution matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and/or liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). We show that the reactivities of individual lysines from peptides containing up to three Lys residues are readily quantified using this method. New insights into operator DNA binding and the Cu(I)-mediated structural transition in the tetrameric copper sensor CsoR are also obtained.
Journal of the American Society for Mass Spectrometry | 2012
Yi He; Matthew A. Lauber; James P. Reilly
It has previously been shown that when cross-linking reagent diethyl suberthioimidate (DEST) reacts with primary amines of proteins to yield amidinated residues, the primary amines retain their high basicity, and cross-linked species can be enriched by strong cation exchange. It is now demonstrated that collisional activation of singly-charged DEST cross-linked peptide ions leads to preferential cleavage at the cross-linked sites. The resulting product ions facilitate the detection and identification of cross-linked peptides.