Matthew Bentham
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew Bentham.
Hepatology | 2011
Toshana L. Foster; Mark Verow; Ann L. Wozniak; Matthew Bentham; Joseph Thompson; Elizabeth Atkins; Steven A. Weinman; Colin W. G. Fishwick; Richard Foster; Mark Harris; Stephen Griffin
The hepatitis C virus (HCV) p7 ion channel plays a critical role during infectious virus production and represents an important new therapeutic target. Its activity is blocked by structurally distinct classes of small molecules, with sensitivity varying between isolate p7 sequences. Although this is indicative of specific protein–drug interactions, a lack of high‐resolution structural information has precluded the identification of inhibitor binding sites, and their modes of action remain undefined. Furthermore, a lack of clinical efficacy for existing p7 inhibitors has cast doubt over their specific antiviral effects. We identified specific resistance mutations that define the mode of action for two classes of p7 inhibitor: adamantanes and alkylated imino sugars (IS). Adamantane resistance was mediated by an L20F mutation, which has been documented in clinical trials. Molecular modeling revealed that L20 resided within a membrane‐exposed binding pocket, where drug binding prevented low pH‐mediated channel opening. The peripheral binding pocket was further validated by a panel of adamantane derivatives as well as a bespoke molecule designed to bind the region with high affinity. By contrast, an F25A polymorphism found in genotype 3a HCV conferred IS resistance and confirmed that these compounds intercalate between p7 protomers, preventing channel oligomerization. Neither resistance mutation significantly reduced viral fitness in culture, consistent with a low genetic barrier to resistance occurring in vivo. Furthermore, no cross‐resistance was observed for the mutant phenotypes, and the two inhibitor classes showed additive effects against wild‐type HCV. Conclusion: These observations support the notion that p7 inhibitor combinations could be a useful addition to future HCV‐specific therapies. (HEPATOLOGY 2011;)
Hepatology | 2014
Toshana L. Foster; Gary S. Thompson; Arnout P. Kalverda; Jayakanth Kankanala; Matthew Bentham; Laura F. Wetherill; Joseph Thompson; Amy M. Barker; Dean Clarke; Marko Noerenberg; Arwen R. Pearson; David J. Rowlands; Steven W. Homans; Mark Harris; Richard Foster; Stephen Griffin
Current interferon‐based therapy for hepatitis C virus (HCV) infection is inadequate, prompting a shift toward combinations of direct‐acting antivirals (DAA) with the first protease‐targeted drugs licensed in 2012. Many compounds are in the pipeline yet primarily target only three viral proteins, namely, NS3/4A protease, NS5B polymerase, and NS5A. With concerns growing over resistance, broadening the repertoire for DAA targets is a major priority. Here we describe the complete structure of the HCV p7 protein as a monomeric hairpin, solved using a novel combination of chemical shift and nuclear Overhauser effect (NOE)‐based methods. This represents atomic resolution information for a full‐length virus‐coded ion channel, or “viroporin,” whose essential functions represent a clinically proven class of antiviral target exploited previously for influenza A virus therapy. Specific drug‐protein interactions validate an allosteric site on the channel periphery and its relevance is demonstrated by the selection of novel, structurally diverse inhibitory small molecules with nanomolar potency in culture. Hit compounds represent a 10,000‐fold improvement over prototypes, suppress rimantadine resistance polymorphisms at submicromolar concentrations, and show activity against other HCV genotypes. Conclusion: This proof‐of‐principle that structure‐guided design can lead to drug‐like molecules affirms p7 as a much‐needed new target in the burgeoning era of HCV DAA. (Hepatology 2014;59:408–422)
Journal of Virology | 2012
Matthew Bentham; Kris Holmes; Sophie Forrest; David J. Rowlands; Nicola J. Stonehouse
ABSTRACT The replication of many viruses involves the formation of higher-order structures or replication “factories.” We show that the key replication enzyme of foot-and-mouth disease virus (FMDV), the RNA-dependent RNA polymerase, forms fibrils in vitro. Although there are similarities with previously characterized poliovirus polymerase fibrils, FMDV fibrils are narrower, are composed of both protein and RNA, and, importantly, are seen only when all components of an elongation assay are present. Furthermore, an inhibitory RNA aptamer prevents fibril formation.
Journal of Virology | 2016
Jamel Mankouri; Cheryl T. Walter; Hazel Stewart; Matthew Bentham; Wei Sun Park; Won Do Heo; Mitsunori Fukuda; Stephen Griffin; Mark Harris
ABSTRACT The release of infectious hepatitis C virus (HCV) particles from infected cells remains poorly characterized. We previously demonstrated that virus release is dependent on the endosomal sorting complex required for transport (ESCRT). Here, we show a critical role of trans-Golgi network (TGN)-endosome trafficking during the assembly, but principally the secretion, of infectious virus. This was demonstrated by both small interfering RNA (siRNA)-mediated silencing of TGN-associated adaptor proteins and a panel of dominant negative (DN) Rab GTPases involved in TGN-endosome trafficking steps. Importantly, interfering with factors critical for HCV release did not have a concomitant effect on secretion of triglycerides, ApoB, or ApoE, indicating that particles are likely released from Huh7 cells via pathways distinct from that of very-low-density lipoprotein (VLDL). Finally, we show that HCV NS2 perturbs TGN architecture, redistributing TGN membranes to closely associate with HCV core protein residing on lipid droplets. These findings support the notion that HCV hijacks TGN-endosome trafficking to facilitate particle assembly and release. Moreover, although essential for assembly and infectivity, the trafficking of mature virions is seemingly independent of host lipoproteins. IMPORTANCE The mechanisms by which infectious hepatitis C virus particles are assembled and released from the cell are poorly understood. We show that the virus subverts host cell trafficking pathways to effect the release of virus particles and disrupts the structure of the Golgi apparatus, a key cellular organelle involved in secretion. In addition, we demonstrate that the mechanisms used by the virus to exit the cell are distinct from those used by the cell to release lipoproteins, suggesting that the virus effects a unique modification to cellular trafficking pathways.
Journal of General Virology | 2013
Matthew Bentham; Toshana L. Foster; Christopher J. McCormick; Stephen Griffin
Hepatitis C virus (HCV) p7 protein is critical for the efficient production of infectious virions in culture. p7 undergoes genotype-specific protein-protein interactions as well as displaying channel-forming activity, making it unclear whether the phenotypes of deleterious p7 mutations result from the disruption of one or both of these functions. Here, we showed that proton channel activity alone, provided in trans by either influenza virus M2 or genotype 1b HCV p7, was both necessary and sufficient to restore infectious particle production to genotype 2a HCV (JFH-1 isolate) carrying deleterious p7 alanine substitutions within the p7 dibasic loop (R33A, R35A), and the N-terminal trans-membrane region (N15 : C16 : H17/AAA). Both mutations markedly reduced mature p7 abundance, with those in the dibasic loop also significantly reducing levels of mature E2 and NS2. Interestingly, whilst M2 and genotype 1b p7 restored the same level of intracellular infectivity as JFH-1 p7, supplementing with the isogenic protein led to a further increase in secreted infectivity, suggesting a late-acting role for genotype-specific p7 protein interactions. Finally, cells infected by viruses carrying p7 mutations contained non-infectious core-containing particles with densities equivalent to WT HCV, indicating a requirement for p7 proton channel activity in conferring an infectious phenotype to virions.
Gut | 2018
Adel Samson; Matthew Bentham; Karen Scott; Gerard J. Nuovo; Abigail Bloy; Elizabeth S. Appleton; Robert A. Adair; Rajiv Dave; Adam Peckham-Cooper; Giles Toogood; Seishi Nagamori; Matt Coffey; Richard Vile; Kevin J. Harrington; Peter Selby; Fiona Errington-Mais; Alan Melcher; Stephen Griffin
Objective Oncolytic viruses (OVs) represent promising, proinflammatory cancer treatments. Here, we explored whether OV-induced innate immune responses could simultaneously inhibit HCV while suppressing hepatocellular carcinoma (HCC). Furthermore, we extended this exemplar to other models of virus-associated cancer. Design and results Clinical grade oncolytic orthoreovirus (Reo) elicited innate immune activation within primary human liver tissue in the absence of cytotoxicity and independently of viral genome replication. As well as achieving therapy in preclinical models of HCC through the activation of innate degranulating immune cells, Reo-induced cytokine responses efficiently suppressed HCV replication both in vitro and in vivo. Furthermore, Reo-induced innate responses were also effective against models of HBV-associated HCC, as well as an alternative endogenous model of Epstein–Barr virus-associated lymphoma. Interestingly, Reo appeared superior to the majority of OVs in its ability to elicit innate inflammatory responses from primary liver tissue. Conclusions We propose that Reo and other select proinflammatory OV may be used in the treatment of multiple cancers associated with oncogenic virus infections, simultaneously reducing both virus-associated oncogenic drive and tumour burden. In the case of HCV-associated HCC (HCV-HCC), Reo should be considered as an alternative agent to supplement and support current HCV-HCC therapies, particularly in those countries where access to new HCV antiviral treatments may be limited.
Journal of General Virology | 2014
Matthew Bentham; Najat Marraiki; Christopher J. McCormick; David J. Rowlands; Stephen Griffin
Infectious hepatitis C virus (HCV) particle production in the genotype 2a JFH-1-based cell culture system involves non-structural proteins in addition to canonical virion components. NS2 has been proposed to act as a protein adaptor, co-ordinating the early stages of virion assembly. However, other studies have identified late-acting roles for this protein, making its precise involvement in infectious particle production unclear. Using a robust, bipartite trans-encapsidation system based upon baculovirus expression of HCV structural proteins, we have generated HCV-like particles (HCV-LP) in the absence of NS2 with overt similarity to wild-type virions. HCV-LP could transduce naive cells with trans-encapsidated subgenomic replicon RNAs and shared similar biochemical and biophysical properties with JFH-1 HCV. Both genotype 1b and JFH-1 intracellular HCV-LP were produced in the absence of NS2, whereas restoring NS2 to the JFH-1 system dramatically enhanced secreted infectivity, consistent with a late-acting role. Our system recapitulated authentic HCV particle assembly via trans-complementation of bicistronic, NS2-deleted, chimeric HCV, which is otherwise deficient in particle production. This closely resembled replicon-mediated NS2 trans-complementation, confirming that baculovirus expression of HCV proteins did not unduly affect particle production. Furthermore, this suggests that separation of structural protein expression from replicating HCV RNAs that are destined to be packaged alleviates an early stage requirement for NS2 during particle formation. This highlights our current lack of understanding of how NS2 mediates assembly, yet comparison of full-length and bipartite systems may provide further insight into this process.
bioRxiv | 2018
Joseph Shaw; Rajendra Gosein; Monoj Mon Kalita; Jayakanth Kankanala; D. Ram Mahato; Toshana L. Foster; Claire Scott; Matthew Bentham; Laura F. Wetherill; Abigail Bloy; Adel Samson; Mark Harris; Andrew Macdonald; David J. Rowlands; Jamel Mankouri; Wolfgang B. Fischer; Richard Foster; Stephen Griffin
Since the 1960s, a single class of agent has been licensed targeting virus-encoded ion channels, or “viroporins”, contrasting the success of channel blocking drugs in other areas of medicine. Although resistance arose to these prototypic adamantane inhibitors of the influenza A virus (IAV) M2 proton channel, a growing number of clinically and economically important viruses are now recognised to encode essential viroporins providing potential targets for modern drug discovery. We describe the first rationally designed viroporin inhibitor with a comprehensive structure-activity relationship (SAR). This step-change in understanding not only revealed a second biological function for the p7 viroporin from hepatitis C virus (HCV) during virus entry, but also enabled the synthesis of a labelled tool compound that retained biological activity. Hence, p7 inhibitors (p7i) represent a unique class of HCV antiviral targeting both the spread and establishment of infection, as well as a precedent for future viroporin-targeted drug discovery.Despite the success of channel blocking drugs, only a single class of agent targeting virus-encoded ion channels, or “viroporins”, has been licensed since the 1960s1–3. Although resistance to adamantane inhibitors of the influenza A virus (IAV) M2 proton channel arose, a growing number of clinically important and emerging viruses encode essential viroporins4–6, providing targets for new interventions. Here, we describe rational antiviral development targeting the p7 viroporin from hepatitis C virus (HCV) and reveal a second biological function for its channel activity. Lead-like oxindole inhibitors potently blocked p7 function during virion secretion, but were also active during virus entry, supporting the presence of channel complexes within infectious HCV particles. Hence, p7 inhibitors (p7i) represent dual-acting HCV antivirals targeting both the spread and establishment of infection, which may be relevant to future antiviral prophylaxis.
Journal of General Virology | 2006
Matthew Bentham; Sabine Mazaleyrat; Mark Harris
Journal of General Virology | 2003
Matthew Bentham; Sabine Mazaleyrat; Mark Harris