Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Blatnik is active.

Publication


Featured researches published by Matthew Blatnik.


Analytical Biochemistry | 2011

Quantitation of amyloid beta peptides Aβ1–38, Aβ1–40, and Aβ1–42 in human cerebrospinal fluid by ultra-performance liquid chromatography–tandem mass spectrometry

Mary E. Lame; Erin E. Chambers; Matthew Blatnik

Critical events in Alzheimers disease (AD) involve an imbalance between the production and clearance of amyloid beta (Aβ) peptides from the brain. Current methods for Aβ quantitation rely heavily on immuno-based techniques. However, these assays require highly specific antibodies and reagents that are time-consuming and expensive to develop. Immuno-based assays are also characterized by poor dynamic ranges, cross-reactivity, matrix interferences, and dilution linearity problems. In particular, noncommercial immunoassays are especially subject to high intra- and interassay variability because they are not subject to more stringent manufacturing controls. Combinations of these factors make immunoassays more labor-intensive and often challenging to validate in support of clinical studies. Here we describe a mixed-mode solid-phase extraction method and an ultra-performance liquid chromatography tandem mass spectrometry (SPE UPLC-MS/MS) assay for the simultaneous quantitation of Aβ(1-38), Aβ(1-40), and Aβ(1-42) from human cerebrospinal fluid (CSF). Negative ion versus positive ion species were compared using their corresponding multiple reaction monitoring (MRM) transitions, and negative ions were approximately 1.6-fold greater in intensity but lacked selectivity in matrix. The positive ion MRM assay was more than sufficient to quantify endogenous Aβ peptides. Aβ standards were prepared in artificial CSF containing 5% rat plasma, and quality control samples were prepared in three pooled CSF sources. Extraction efficiency was greater than 80% for all three peptides, and the coefficient of variation during analysis was less than 15% for all species. Mean basal levels of Aβ species from three CSF pools were 1.64, 2.17, and 1.26 ng/ml for Aβ(1-38); 3.24, 3.63, and 2.55 ng/ml for Aβ(1-40); and 0.50, 0.63, and 0.46 ng/ml for Aβ(1-42).


Journal of Clinical Investigation | 2016

ChREBP regulates fructose-induced glucose production independently of insulin signaling

Misung Kim; Sarah A. Krawczyk; Ludivine Doridot; Alan J. Fowler; Jennifer X. Wang; Sunia A. Trauger; Hye Lim Noh; Hee Joon Kang; John K. Meissen; Matthew Blatnik; Jason K. Kim; Michelle Lai; Mark A. Herman

Obese, insulin-resistant states are characterized by a paradoxical pathogenic condition in which the liver appears to be selectively insulin resistant. Specifically, insulin fails to suppress glucose production, yet successfully stimulates de novo lipogenesis. The mechanisms underlying this dysregulation remain controversial. Here, we hypothesized that carbohydrate-responsive element-binding protein (ChREBP), a transcriptional activator of glycolytic and lipogenic genes, plays a central role in this paradox. Administration of fructose increased hepatic hexose-phosphate levels, activated ChREBP, and caused glucose intolerance, hyperinsulinemia, hypertriglyceridemia, and hepatic steatosis in mice. Activation of ChREBP was required for the increased expression of glycolytic and lipogenic genes as well as glucose-6-phosphatase (G6pc) that was associated with the effects of fructose administration. We found that fructose-induced G6PC activity is a major determinant of hepatic glucose production and reduces hepatic glucose-6-phosphate levels to complete a homeostatic loop. Moreover, fructose activated ChREBP and induced G6pc in the absence of Foxo1a, indicating that carbohydrate-induced activation of ChREBP and G6PC dominates over the suppressive effects of insulin to enhance glucose production. This ChREBP/G6PC signaling axis is conserved in humans. Together, these findings support a carbohydrate-mediated, ChREBP-driven mechanism that contributes to hepatic insulin resistance.


Cell Metabolism | 2017

Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice.

Emily Cokorinos; Jake Delmore; Allan R. Reyes; Bina Albuquerque; Rasmus Kjøbsted; Nicolas O. Jørgensen; Jean-Luc Tran; Aditi Jatkar; Katherine Cialdea; Ryan M. Esquejo; John K. Meissen; Matthew F. Calabrese; Jason Cordes; Robert Moccia; David A. Tess; Christopher T. Salatto; Timothy M. Coskran; Alan Opsahl; Declan Flynn; Matthew Blatnik; Wenlin Li; Erick Kindt; Marc Foretz; Benoit Viollet; Jessica Ward; Ravi G. Kurumbail; Amit S. Kalgutkar; Jørgen F. P. Wojtaszewski; Kimberly O'keefe Cameron; Russell A. Miller

The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK β1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients.


Clinical Endocrinology | 2011

A practical guide for the stabilization of acylghrelin in human blood collections

Matthew Blatnik; Catherine Soderstrom

Objective and methods  To better understand acylghrelin plasma stability, human synthetic acylghrelin was spiked into plasma and tracked by liquid chromatography tandem mass spectrometry. To investigate the best method for quantifying clinical plasma acylghrelin levels, pre‐ and postprandial human blood was collected from healthy volunteers (n = 6) using various sample collections and treatments. Plasma ghrelin levels from human blood collections were analysed by enzyme‐linked immunosorbant assay (ELISA).


Journal of Chromatography A | 2014

Strategies for quantitation of endogenous adenine nucleotides in human plasma using novel ion-pair hydrophilic interaction chromatography coupled with tandem mass spectrometry

Guodong Zhang; Annie D. Walker; Zhaosheng Lin; Xiaogang Han; Matthew Blatnik; Rick C. Steenwyk; Elizabeth Groeber

We present here a novel and highly sensitive ion-pair hydrophilic interaction chromatography-tandem mass spectrometry (IP-HILIC-MS/MS) method for quantitation of highly polar acid metabolites like adenine nucleotides. A mobile phase based on diethylamine (DEA) and hexafluoro-2-isopropanol (HFIP) and an aminopropyl (NH2) column were applied for a novel chromatographic separation for the determination of AMP, ADP and ATP in biological matrices. This novel IP-HILIC mechanism could be hypothesized by the ion-pairing reagent (DEA) in the mobile phase forming neutral and hydrophilic complexes with the analytes of polar organic acids. The IP-HILIC-MS/MS assay for adenine nucleotides was successfully validated with satisfactory linearity, sensitivity, accuracy, reproducibility and matrix effects. The lower limit of quantitation (LLOQ) at 2.00ng/mL obtained for ATP showed a least 10-fold higher sensitivity than previous LC-MS/MS assays except nano-LC-MS/MS assay. In summary, this novel IP-HILIC-MS/MS assay provides a sensitive method for nucleotides bioanalysis and shows great potential to determine a number of organic acids in biological matrices.


Bioanalysis | 2012

Prandial ghrelin attenuation provides evidence that des‑acyl ghrelin may be an artifact of sample handling in human plasma

Matthew Blatnik; Catherine Soderstrom; Mark Dysinger; Stephanie Fraser

BACKGROUND Plasma acyl and des-acyl ghrelin are thought of as components of total ghrelin, but this has never been validated using ex vivo spiking experiments, human sample collection comparisons and fit-for-purpose translatable assays. RESULTS Acyl ghrelin plasma stability was analyzed by LC-MS/MS and it revealed that acyl ghrelin is enzymatically and chemically converted to des-acyl ghrelin in the presence of active serine proteases and HCl. ELISAs with less than 30% total error were used to assess acyl ghrelin behavior in matched authentic human samples. Acyl and total ghrelin were not statistically different in 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride samples and acyl ghrelin losses in K(2)EDTA plasma were accounted for in des-acyl ghrelin formation. CONCLUSION Acyl ghrelin is total ghrelin and des-acyl ghrelin should not be detectible in healthy human plasma under optimal sample handling and assaying conditions.


Prostaglandins & Other Lipid Mediators | 2010

Quantification of urinary PGEm, 6-keto PGF1α and 2,3-dinor-6-keto PGF1α by UFLC–MS/MS before and after exercise

Matthew Blatnik; Rick C. Steenwyk

Eicosanoids play an important role in the evaluation of pro-inflammatory responses and in the safety and toxicity of novel therapeutic agents. This work describes a high-throughput UFLCMS/MS method for the analysis of three urinary prostanoid biomarkers of pro-inflammatory responses, tetranor PGEm, 6-keto PGF(1alpha) and 2,3-dinor-6-keto PFG(1alpha). Nine male volunteers of various age and fitness level participated in this study. Six provided pre- and post-exercise samples and three provided intraday samples. Tetranor PGEm and 6-keto PGF(1alpha) increased significantly in patients after exercise (p<0.017 and p<0.029). In individual patient sets, tetranor PGEm levels increased from 1.5- to 6-fold pre- vs. post-exercise, levels of 6-keto PGF(1alpha) increased more dramatically from 2- to 55-fold pre- vs. post-exercise. The prostanoid 2,3-dinor-6-keto PGF(1alpha) remained unchanged post-exercise. Data was normalized to urinary creatinine concentration, which increased approximately 40% post-exercise.


Archives of Biochemistry and Biophysics | 2013

2-Arachidonoylglycerol is a substrate for butyrylcholinesterase: A potential mechanism for extracellular endocannabinoid regulation

Jason Barricklow; Matthew Blatnik

2-Arachidonoylglycerol (2-AG) is a component of the endocannabinoid receptor pathway and is primarily hydrolyzed by monoacylglycerol lipase (MAGL) in vivo. We found that the non-specific serine esterase, butyrylcholinesterase (BChE), can hydrolyze 2-AG with reasonable affinity and may present a new compensatory mechanism for endocannabinoid regulation. In vitro hydrolysis reactions of 2-AG with equine BChE were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) positive/negative electrospray ionization (ESI±) to measure the formation of arachidonic acid (AA) and the loss of 2-AG over time (min). The resulting Michaelis-Menten approximations reveal that BChE has affinity towards 2-AG in phosphate buffer at neutral pH (7.4). The calculated Vmax, Km and kcat were 12.1nmols(-1), 57.5μM, and 0.074s(-1), respectively, which produced a diffusion-controlled rate of association (kcat/Km) of 1.3×10(3)M(-1)s(-1). Human BChE 2-AG hydrolysis was measured by immunoprecipitating BChE from fresh plasma and monitoring 2-AG loss and AA formation over time. These findings show that BChE can hydrolyze 2-AG which may be evidence of a more specific role for BChE in endocannabinoid regulation.


Nature Medicine | 2018

Targeting hepatic glutaminase activity to ameliorate hyperglycemia

Russell A. Miller; Yuji Shi; Wenyun Lu; David A. Pirman; Aditi Jatkar; Matthew Blatnik; Hong Wu; César Cárdenas; Min Wan; J. Kevin Foskett; Junyoung O. Park; Yiyi Zhang; William L. Holland; Joshua D. Rabinowitz; Morris J. Birnbaum

Glucagon levels increase under homeostatic, fasting conditions, promoting the release of glucose from the liver by accelerating the breakdown of glycogen (also known as glycogenolysis). Glucagon also enhances gluconeogenic flux, including from an increase in the hepatic consumption of amino acids. In type 2 diabetes, dysregulated glucagon signaling contributes to the elevated hepatic glucose output and fasting hyperglycemia that occur in this condition. Yet, the mechanism by which glucagon stimulates gluconeogenesis remains incompletely understood. Contrary to the prevailing belief that glucagon acts primarily on cytoplasmic and nuclear targets, we find glucagon-dependent stimulation of mitochondrial anaplerotic flux from glutamine that increases the contribution of this amino acid to the carbons of glucose generated during gluconeogenesis. This enhanced glucose production is dependent on protein kinase A (PKA) and is associated with glucagon-stimulated calcium release from the endoplasmic reticulum, activation of mitochondrial α-ketoglutarate dehydrogenase, and increased glutaminolysis. Mice with reduced levels of hepatic glutaminase 2 (GLS2), the enzyme that catalyzes the first step in glutamine metabolism, show lower glucagon-stimulated glutamine-to-glucose flux in vivo, and GLS2 knockout results in higher fasting plasma glucagon and glutamine levels with lower fasting blood glucose levels in insulin-resistant conditions. As found in genome-wide association studies (GWAS), human genetic variation in the region of GLS2 is associated with higher fasting plasma glucose; here we show in human cryopreserved primary hepatocytes in vitro that these natural gain-of-function missense mutations in GLS2 result in higher glutaminolysis and glucose production. These data emphasize the importance of gluconeogenesis from glutamine, particularly in pathological states of increased glucagon signaling, while suggesting a possible new therapeutic avenue to treat hyperglycemia.


Analytical Biochemistry | 2016

Phenotyping hepatocellular metabolism using uniformly labeled carbon-13 molecular probes and LC-HRMS stable isotope tracing.

John K. Meissen; David A. Pirman; Min Wan; Emily Miller; Aditi Jatkar; Russell A. Miller; Rick C. Steenwyk; Matthew Blatnik

Metabolite stable isotope tracing is a powerful bioanalytical strategy that has the potential to unravel phenotypic markers of early pharmaceutical efficacy by monitoring enzymatic incorporation of carbon-13 atoms into targeted pathways over time. The practice of probing biological systems with carbon-13 labeled molecules using broad MS-based screens has been utilized for many years in academic laboratories but has had limited application in the pharmaceutical R&D environment. The goal of this work was to establish a LCMS analytical workflow that was capable of monitoring carbon-13 isotope changes in glycolysis, the TCA and urea cycles, and non-essential amino acid metabolism. This work applies a standardized protein precipitation with 80% cold methanol and two distinct reverse-phase ion-pair liquid chromatography methods coupled to either a positive- or negative-ion mode high-resolution accurate mass spectrometry screening method. The data herein combines thousands of single-point peak integrations into a novel metabolite network map as a visualization aid to probe and monitor stable isotope incorporation in murine hepatocytes using uniformly labeled (13)C6 glucose, (13)C3 lactate, and (13)C5 glutamine. This work also demonstrates that nitrogen metabolism may have a large influence on the TCA cycle and gluconeogenic carbon fluxes in hepatocyte cell culture.

Collaboration


Dive into the Matthew Blatnik's collaboration.

Top Co-Authors

Avatar

Russell A. Miller

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Min Wan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

J. Kevin Foskett

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge