Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Boyles is active.

Publication


Featured researches published by Matthew Boyles.


Nanotoxicology | 2010

An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro

Martin J. D. Clift; Matthew Boyles; David M. Brown; Vicki Stone

Abstract The aim of this study was to investigate the ability of a series of different surface-coated quantum dots (QDs) to cause oxidative stress and affect cell signalling in J774.A1 macrophages. Organic QDs caused a significant (p < 0.001) decrease in glutathione (GSH) levels over 24 h, while COOH and NH2 (PEG) QDs induced a significant decrease (p < 0.05) in GSH at 6 and 24 h only. J774.A1 cytosolic Ca2+ concentration significantly increased (p < 0.01) 30 min after treatment with all QDs. Trolox was, however, able to prevent the COOH and NH2 (PEG) QD-induced Ca2+ signal, but not the organic QD induced effect. All QDs tested were observed to have a relatively low ability to stimulate increased expression of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-α). In conclusion, QDs differ in their interactions with macrophages according to their specific surface properties.


Toxicology in Vitro | 2015

Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos.

Matthew Boyles; Lesley Young; David M. Brown; Laura MacCalman; Hilary Cowie; Anna Moisala; Fiona Ruth Smail; Paula J.W. Smith; Lorna Proudfoot; Alan H. Windle; Vicki Stone

The potential toxicity of carbon nanotubes (CNTs) has been compared to pathogenic fibres such as asbestos. It is important to test this hypothesis to ascertain safe methods for CNT production, handling and disposal. In this study aspects reported to contribute to CNT toxicity were assessed: length, aspect ratio, iron content and crystallinity; with responses compared to industrially produced MWCNTs and toxicologically relevant materials such as asbestos. The impacts of these particles on a range of macrophage models in vitro were assessed due to the key role of macrophages in particle clearance and particle/fibre-induced disease. Industrially produced and long MWCNTs were cytotoxic to cells, and were potent in inducing pro-inflammatory and pro-fibrotic immune responses. Short CNTs did not induce any cytotoxicity. Frustrated phagocytosis was most evident in response to long CNTs, as was respiratory burst and reduction in phagocytic ability. Short CNTs, metal content and crystallinity had less or no influence on these endpoints, suggesting that many responses were fibre-length dependent. This study demonstrates that CNTs are potentially pathogenic, as they were routinely found to induce detrimental responses in macrophages greater than those induced by asbestos at the same mass-based dose.


Journal of Nanobiotechnology | 2015

Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components

Matthew Boyles; Theresa Kristl; Ancuela Andosch; Mirjam Zimmermann; Ngoc Tran; Eudald Casals; Martin Himly; Victor Puntes; Christian G. Huber; Ursula Lütz-Meindl; Albert Duschl

AbstractBackground Gold nanoparticles (AuNPs) are a popular choice for use in medical and biomedical research applications. With suitable functionalisation AuNPs can be applied in drug delivery systems, or can aid in disease diagnosis. One such functionalisation is with chitosan, which enables efficient interaction and permeation of cellular membranes, providing an effective adjuvant. As both AuNPs and chitosan have been shown to have low toxicity and high biocompatibility their proposed use in nanomedicine, either individually or combined, is expanding. However, further toxicological and immunological assessments of AuNP-chitosan conjugates are still needed. Therefore, we have evaluated how AuNP functionalisation with chitosan can affect uptake, cytotoxicity, and immunological responses within mononuclear cells, and influence the interaction of AuNPs with biomolecules within a complex biofluid. The AuNPs used were negatively charged through citrate-coating, or presented either low or high positive charge through chitosan-functionalisation. Uptake by THP-1 cells was assessed via transmission electron microscopy and electron energy loss spectroscopy, pro-inflammatory responses by ELISA and qRT-PCR, and cell death and viability via lactate dehydrogenase release and mitochondrial activity, respectively. Interactions of AuNPs with protein components of a frequently used in vitro cell culture medium supplement, foetal calf serum, were investigated using mass spectrometry.ResultsAlthough cells internalised all AuNPs, uptake rates and specific routes of intracellular trafficking were dependent upon chitosan-functionalisation. Accordingly, an enhanced immune response was found to be chitosan-functionalisation-dependent, in the form of CCL2, IL-1β, TNF-α and IL-6 secretion, and expression of IL-1β and NLRP3 mRNA. A corresponding increase in cytotoxicity was found in response to chitosan-coated AuNPs. Furthermore, chitosan-functionalisation was shown to induce an increase in unique proteins associating with these highly charged AuNPs.ConclusionsIt can be concluded that functionalisation of AuNPs with the perceived non-toxic biocompatible molecule chitosan at a high density can elicit functionalisation-dependent intracellular trafficking mechanisms and provoke strong pro-inflammatory conditions, and that a high affinity of these NP-conjugates for biomolecules may be implicit in these cellular responses.


Proteomics | 2015

Workflows for automated downstream data analysis and visualization in large-scale computational mass spectrometry.

Stephan Aiche; Timo Sachsenberg; Erhan Kenar; Mathias Walzer; Bernd Wiswedel; Theresa Kristl; Matthew Boyles; Albert Duschl; Christian G. Huber; Michael R. Berthold; Knut Reinert; Oliver Kohlbacher

MS‐based proteomics and metabolomics are rapidly evolving research fields driven by the development of novel instruments, experimental approaches, and analysis methods. Monolithic analysis tools perform well on single tasks but lack the flexibility to cope with the constantly changing requirements and experimental setups. Workflow systems, which combine small processing tools into complex analysis pipelines, allow custom‐tailored and flexible data‐processing workflows that can be published or shared with collaborators. In this article, we present the integration of established tools for computational MS from the open‐source software framework OpenMS into the workflow engine Konstanz Information Miner (KNIME) for the analysis of large datasets and production of high‐quality visualizations. We provide example workflows to demonstrate combined data processing and visualization for three diverse tasks in computational MS: isobaric mass tag based quantitation in complex experimental setups, label‐free quantitation and identification of metabolites, and quality control for proteomics experiments.


Particle and Fibre Toxicology | 2015

Copper oxide nanoparticle toxicity profiling using untargeted metabolomics.

Matthew Boyles; Christina Ranninger; Roland Reischl; Marc Rurik; Richard Tessadri; Oliver Kohlbacher; Albert Duschl; Christian G. Huber

BackgroundThe rapidly increasing number of engineered nanoparticles (NPs), and products containing NPs, raises concerns for human exposure and safety. With this increasing, and ever changing, catalogue of NPs it is becoming more difficult to adequately assess the toxic potential of new materials in a timely fashion. It is therefore important to develop methods which can provide high-throughput screening of biological responses. The use of omics technologies, including metabolomics, can play a vital role in this process by providing relatively fast, comprehensive, and cost-effective assessment of cellular responses. These techniques thus provide the opportunity to identify specific toxicity pathways and to generate hypotheses on how to reduce or abolish toxicity.ResultsWe have used untargeted metabolome analysis to determine differentially expressed metabolites in human lung epithelial cells (A549) exposed to copper oxide nanoparticles (CuO NPs). Toxicity hypotheses were then generated based on the affected pathways, and critically tested using more conventional biochemical and cellular assays. CuO NPs induced regulation of metabolites involved in oxidative stress, hypertonic stress, and apoptosis. The involvement of oxidative stress was clarified more easily than apoptosis, which involved control experiments to confirm specific metabolites that could be used as standard markers for apoptosis; based on this we tentatively propose methylnicotinamide as a generic metabolic marker for apoptosis.ConclusionsOur findings are well aligned with the current literature on CuO NP toxicity. We thus believe that untargeted metabolomics profiling is a suitable tool for NP toxicity screening and hypothesis generation.


Archives of Toxicology | 2017

Pan-European inter-laboratory studies on a panel of in vitro cytotoxicity and pro-inflammation assays for nanoparticles

Jean-Pascal Piret; Olesja Bondarenko; Matthew Boyles; Martin Himly; Ar Ribeiro; Federico Benetti; Caroline Smal; Braulio Lima; Annegret Potthoff; Monica Simion; Elise Dumortier; Paulo Emílio Corrêa Leite; Luciene Bottentuit Balottin; José Mauro Granjeiro; Angela Ivask; Anne Kahru; Isabella Radauer-Preiml; Ulrike Tischler; Albert Duschl; Christelle Saout; Sergio Anguissola; Andrea Haase; An Jacobs; Inge Nelissen; Superb K. Misra; Olivier Toussaint

The rapid development of nanotechnologies and increased production and use of nanomaterials raise concerns about their potential toxic effects for human health and environment. To evaluate the biological effects of nanomaterials, a set of reliable and reproducible methods and development of standard operating procedures (SOPs) is required. In the framework of the European FP7 NanoValid project, three different cell viability assays (MTS, ATP content, and caspase-3/7 activity) with different readouts (absorbance, luminescence and fluorescence) and two immune assays (ELISA of pro-inflammatory cytokines IL1-β and TNF-α) were evaluated by inter-laboratory comparison. The aim was to determine the suitability and reliability of these assays for nanosafety assessment. Studies on silver and copper oxide nanoparticles (NPs) were performed, and SOPs for particle handling, cell culture, and in vitro assays were established or adapted. These SOPs give precise descriptions of assay procedures, cell culture/seeding conditions, NPs/positive control preparation and dilutions, experimental well plate preparation, and evaluation of NPs interference. The following conclusions can be highlighted from the pan-European inter-laboratory studies: Testing of NPs interference with the toxicity assays should always be conducted. Interference tests should be designed as close as possible to the cell exposure conditions. ATP and MTS assays gave consistent toxicity results with low inter-laboratory variability using Ag and CuO NPs and different cell lines and therefore, could be recommended for further validation and standardization. High inter-laboratory variability was observed for Caspase 3/7 assay and ELISA for IL1-β and TNF-α measurements.


Environmental Science & Technology | 2017

A Novel Exposure System Termed NAVETTA for In Vitro Laminar Flow Electrodeposition of Nanoaerosol and Evaluation of Immune Effects in Human Lung Reporter Cells

Evelien Frijns; Sandra Verstraelen; Linda C. Stoehr; Jo Van Laer; An Jacobs; Jan Peters; Kristof Tirez; Matthew Boyles; Mark Geppert; Pierre Madl; Inge Nelissen; Albert Duschl; Martin Himly

A new prototype air-liquid interface (ALI) exposure system, a flatbed aerosol exposure chamber termed NAVETTA, was developed to investigate deposition of engineered nanoparticles (NPs) on cultured human lung A549 cells directly from the gas phase. This device mimics human lung cell exposure to NPs due to a low horizontal gas flow combined with cells exposed at the ALI. Electrostatic field assistance is applied to improve NP deposition efficiency. As proof-of-principle, cell viability and immune responses after short-term exposure to nanocopper oxide (CuO)-aerosol were determined. We found that, due to the laminar aerosol flow and a specific orientation of inverted transwells, much higher deposition rates were obtained compared to the normal ALI setup. Cellular responses were monitored with postexposure incubation in submerged conditions, revealing CuO dissolution in a concentration-dependent manner. Cytotoxicity was the result of ionic and nonionic Cu fractions. Using the optimized inverted ALI/postincubation procedure, pro-inflammatory immune responses, in terms of interleukin (IL)-8 promoter and nuclear factor kappa B (NFκB) activity, were observed within short time, i.e. One hour exposure to ALI-deposited CuO-NPs and 2.5 h postincubation. NAVETTA is a novel option for mimicking human lung cell exposure to NPs, complementing existing ALI systems.


Environmental Science & Technology | 2015

Enhanced Deposition by Electrostatic Field-Assistance Aggravating Diesel Exhaust Aerosol Toxicity for Human Lung Cells.

Linda C. Stoehr; Pierre Madl; Matthew Boyles; R. Zauner; M. Wimmer; Harald Wiegand; Ancuela Andosch; Gerhard Kasper; Markus Pesch; Ursula Lütz-Meindl; Martin Himly; Albert Duschl

Air pollution is associated with increased risk of cardiovascular and pulmonary diseases, but conventional air quality monitoring gives no information about biological consequences. Exposing human lung cells at the air-liquid interface (ALI) to ambient aerosol could help identify acute biological responses. This study investigated electrode-assisted deposition of diesel exhaust aerosol (DEA) on human lung epithelial cells (A549) in a prototype exposure chamber. A549 cells were exposed to DEA at the ALI and under submerged conditions in different electrostatic fields (EFs) and were assessed for cell viability, membrane integrity, and IL-8 secretion. Qualitative differences of the DEA and its deposition under different EFs were characterized using scanning mobility particle sizer (SMPS) measurements, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Upon exposure to DEA only, cell viability decreased and membrane impairment increased for cells at the ALI; submerged cells were unaffected. These responses were enhanced upon application of an EF, as was DEA deposition. No adverse effects were observed for filtered DEA or air only, confirming particle-induced responses. The prototype exposure chamber proved suitable for testing DEA-induced biological responses of cells at the ALI using electrode-assisted deposition and may be useful for analysis of other air pollutants.


Inhalation Toxicology | 2018

Assessing the bioactivity of crystalline silica in heated high-temperature insulation wools

Matthew Boyles; David M. Brown; Jilly Knox; Michael Horobin; Mark R. Miller; Helinor Johnston; Vicki Stone

Abstract High-Temperature Insulation Wools (HTIW), such as alumino silicate wools (Refractory Ceramic Fibers) and Alkaline Earth Silicate wools, are used in high-temperature industries for thermal insulation. These materials have an amorphous glass-like structure. In some applications, exposure to high temperatures causes devitrification resulting in the formation of crystalline species including crystalline silica. The formation of this potentially carcinogenic material raises safety concerns regarding after-use handling and disposal. This study aims to determine whether cristobalite formed in HTIW is bioactive in vitro. Mouse macrophage (J774A.1) and human alveolar epithelial (A549) cell lines were exposed to pristine HTIW of different compositions, and corresponding heat-treated samples. Cell death, cytokine release, and reactive oxygen species (ROS) formation were assessed in both cell types. Cell responses to aluminum lactate-coated fibers were assessed to determine if responses were caused by crystalline silica. DQ12 α-quartz was used as positive control, and TiO2 as negative control. HTIW did not induce cell death or intracellular ROS, and their ability to induce pro-inflammatory mediator release was low. In contrast, DQ12 induced cytotoxicity, a strong pro-inflammatory response and ROS generation. The modest pro-inflammatory mediator responses of HTIW did not always coincide with the formation of cristobalite in heated fibers; therefore, we cannot confirm that devitrification of HTIW results in bioactive cristobalite in vitro. In conclusion, the biological responses to HTIW observed were not attributable to a single physicochemical characteristic; instead, a combination of physicochemical characteristics (cristobalite content, fiber chemistry, dimensions and material solubility) appear to contribute to induction of cellular responses.


Journal of Nanobiotechnology | 2015

The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types

Paul Schlinkert; Eudald Casals; Matthew Boyles; Ulrike Tischler; Eva Hornig; Ngoc Tran; Jiayuan Zhao; Martin Himly; Michael Riediker; Gertie J. Oostingh; Victor Puntes; Albert Duschl

Collaboration


Dive into the Matthew Boyles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vicki Stone

Heriot-Watt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eudald Casals

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge