Ancuela Andosch
University of Salzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ancuela Andosch.
Journal of Experimental Botany | 2009
Matthias Affenzeller; Anza Darehshouri; Ancuela Andosch; Cornelius Lütz; Ursula Lütz-Meindl
Programmed cell death (PCD) is a key element in normal plant growth and development which may also be induced by various abiotic and biotic stress factors including salt stress. In the present study, morphological, biochemical, and physiological responses of the theoretically immortal unicellular freshwater green alga Micrasterias denticulata were examined after salt (200 mM NaCl or 200 mM KCl) and osmotic stress induced by iso-osmotic sorbitol. KCl caused morphological changes such as cytoplasmic vacuolization, extreme deformation of mitochondria, and ultrastructural changes of Golgi and ER. However, prolonged salt stress (24 h) led to the degradation of organelles by autophagy, a special form of PCD, both in NaCl- and KCl-treated cells. This was indicated by the enclosure of organelles by ER-derived double membranes. DNA of NaCl- and KCl-stressed cells but not of sorbitol-treated cells showed a ladder-like pattern on agarose gel, which means that the ionic rather than the osmotic component of salt stress leads to the activation of the responsible endonuclease. DNA laddering during salt stress could be abrogated by addition of Zn2+. Neither cytochrome c release from mitochondria nor increase in caspase-3-like activity occurred after salt stress. Reactive oxygen species could be detected within 5 min after the onset of salt and osmotic stress. Respiration, photosynthetic activity, and pigment composition indicated an active metabolism which supports programmed rather than necrotic cell death in Micrasterias after salt stress.
Journal of Plant Physiology | 2012
Ancuela Andosch; Matthias Affenzeller; Cornelius Lütz; Ursula Lütz-Meindl
Cadmium is a highly toxic heavy metal pollutant arising mainly from increasing industrial disposal of electronic components. Due to its high solubility it easily enters soil and aquatic environments. Via its similarity to calcium it may interfere with different kinds of Ca dependent metabolic or developmental processes in biological systems. In the present study we investigate primary cell physiological, morphological and ultrastructural responses of Cd on the unicellular freshwater green alga Micrasterias which has served as a cell biological model system since many years and has proved to be highly sensitive to any kind of abiotic stress. Our results provide evidence that the severe Cd effects in Micrasterias such as unidirectional disintegration of dictyosomes, occurrence of autophagy, decline in photosystem II activity and oxygen production as well as marked structural damage of the chloroplast are based on a disturbance of Ca homeostasis probably by displacement of Ca by Cd. This is indicated by the fact that physiological and structural cadmium effects could be prevented in Micrasterias by pre-treatment with Ca. Additionally, thapsigargin an inhibitor of animal and plant Ca(2+)-ATPase mimicked the adverse Cd induced morphological and functional effects on dictyosomes. Recovery experiments indicated rapid repair mechanisms after Cd stress.
Journal of Plant Physiology | 2014
Stefanie Volland; Elisabeth Bayer; Verena Baumgartner; Ancuela Andosch; Cornelius Lütz; Evelyn Sima; Ursula Lütz-Meindl
Recent studies have shown that metals such as copper, zinc, aluminum, cadmium, chromium, iron and lead cause severe dose-dependent disturbances in growth, morphogenesis, photosynthetic and respiratory activity as well as on ultrastructure and function of organelles in the algal model system Micrasterias denticulata (Volland et al., 2011, 2012; Andosch et al., 2012). In the present investigation we focus on amelioration of these adverse effects of cadmium, chromium and lead by supplying the cells with different antioxidants and essential micronutrients to obtain insight into metal uptake mechanisms and subcellular metal targets. This seems particularly interesting as Micrasterias is adapted to extremely low-concentrated, oligotrophic conditions in its natural bog environment. The divalent ions of iron, zinc and calcium were able to diminish the effects of the metals cadmium, chromium and lead on Micrasterias. Iron showed most ameliorating effects on cadmium and chromium in short- and long-term treatments and improved cell morphogenesis, ultrastructure, cell division rates and photosynthesis. Analytical transmission electron microscopic (TEM) methods (electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI)) revealed that chromium uptake was decreased when Micrasterias cells were pre-treated with iron, which resulted in no longer detectable intracellular chromium accumulations. Zinc rescued the detrimental effects of chromium on net-photosynthesis, respiration rates and electron transport in PS II. Calcium and gadolinium were able to almost completely compensate the inhibiting effects of lead and cadmium on cell morphogenesis after mitosis, respectively. These results indicate that cadmium is taken up by calcium and iron transporters, whereas chromium appears to enter the algae cells via iron and zinc carriers. It was shown that lead is not taken up into Micrasterias at all but exerts its adverse effects on cell growth by substituting cell wall bound calcium. The antioxidants salicylic acid, ascorbic acid and glutathione were not able to ameliorate any of the investigated metal effects on the green alga Micrasterias when added to the culture medium.
Journal of Phycology | 2011
Stefanie Volland; Ancuela Andosch; Manuela Milla; Barbara Stöger; Cornelius Lütz; Ursula Lütz-Meindl
Entry of metals in form of aerosols into areas of high air humidity such as peat bogs represents a serious danger for inhabiting organisms such as the unicellular desmid Micrasterias denticulata Bréb. ex Ralfs (Desmidiaceae, Zynematophyceae, Streptophyta). To understand cellular detoxification and tolerance mechanisms, detailed intracellular localization of metal pollutants is required. This study localizes the metals aluminum (Al), zinc (Zn), copper (Cu), and cadmium (Cd) in the green algal model system Micrasterias after experimental exposure to sulfate solutions by highly sensitive TEM‐coupled electron energy loss spectroscopy (EELS). Concentrations of the metals shown to induce inhibiting effects on cell development and cytomorphogenesis were chosen for these experiments. Long‐term exposure to these metal concentrations led to a pronounced impact on cell physiology expressed by a general decrease in apparent photosynthesis. After long‐term treatment, Zn, Al, and Cu were detected in the cell walls by EELS. Zn was additionally found in vacuoles and mucilage vesicles, and Cu in starch grains and also in mucilage vesicles. Elevated amounts of oxygen in areas where Zn, Al, and Cu were localized suggest sequestration of these metals as oxides. The study demonstrated that Micrasterias can cope differently with metal pollutants. In low doses and during a limited time period, the cells were able to compartmentalize Cu the best, followed by Zn and Al. Cu and Zn were taken up into intracellular compartments, whereas Al was only bound to the cell wall. Cd was not compartmentalized at all, which explains its strongest impact on growth, cell division rate, and photosynthesis in Micrasterias.
Journal of Nanobiotechnology | 2015
Matthew Boyles; Theresa Kristl; Ancuela Andosch; Mirjam Zimmermann; Ngoc Tran; Eudald Casals; Martin Himly; Victor Puntes; Christian G. Huber; Ursula Lütz-Meindl; Albert Duschl
AbstractBackground Gold nanoparticles (AuNPs) are a popular choice for use in medical and biomedical research applications. With suitable functionalisation AuNPs can be applied in drug delivery systems, or can aid in disease diagnosis. One such functionalisation is with chitosan, which enables efficient interaction and permeation of cellular membranes, providing an effective adjuvant. As both AuNPs and chitosan have been shown to have low toxicity and high biocompatibility their proposed use in nanomedicine, either individually or combined, is expanding. However, further toxicological and immunological assessments of AuNP-chitosan conjugates are still needed. Therefore, we have evaluated how AuNP functionalisation with chitosan can affect uptake, cytotoxicity, and immunological responses within mononuclear cells, and influence the interaction of AuNPs with biomolecules within a complex biofluid. The AuNPs used were negatively charged through citrate-coating, or presented either low or high positive charge through chitosan-functionalisation. Uptake by THP-1 cells was assessed via transmission electron microscopy and electron energy loss spectroscopy, pro-inflammatory responses by ELISA and qRT-PCR, and cell death and viability via lactate dehydrogenase release and mitochondrial activity, respectively. Interactions of AuNPs with protein components of a frequently used in vitro cell culture medium supplement, foetal calf serum, were investigated using mass spectrometry.ResultsAlthough cells internalised all AuNPs, uptake rates and specific routes of intracellular trafficking were dependent upon chitosan-functionalisation. Accordingly, an enhanced immune response was found to be chitosan-functionalisation-dependent, in the form of CCL2, IL-1β, TNF-α and IL-6 secretion, and expression of IL-1β and NLRP3 mRNA. A corresponding increase in cytotoxicity was found in response to chitosan-coated AuNPs. Furthermore, chitosan-functionalisation was shown to induce an increase in unique proteins associating with these highly charged AuNPs.ConclusionsIt can be concluded that functionalisation of AuNPs with the perceived non-toxic biocompatible molecule chitosan at a high density can elicit functionalisation-dependent intracellular trafficking mechanisms and provoke strong pro-inflammatory conditions, and that a high affinity of these NP-conjugates for biomolecules may be implicit in these cellular responses.
Autophagy | 2009
Matthias Affenzeller; Anza Darehshouri; Ancuela Andosch; Cornelius Lütz; Ursula Lütz-Meindl
Programmed cell death (PCD) plays a central role in normal plant development and is also induced by various biotic and abiotic stress factors. In the unicellular freshwater green alga Micrasterias denticulata morphological and biochemical hallmarks such as the appearance of autophagosomes, increased production of ROS and degradation of genomic DNA into small fragments (“DNA laddering”) indicate PCD. Our data not only demonstrate that Micrasterias is capable of performing PCD under salt stress, but also that it is triggered by the ionic and not osmotic component of salinity. Additionally, results from the present and previous studies suggest that different inducers may lead to different cell death pathways in one and the same organism.
International Journal of Molecular Sciences | 2015
Ancuela Andosch; Margit Höftberger; Cornelius Lütz; Ursula Lütz-Meindl
Due to modern life with increasing traffic, industrial production and agricultural practices, high amounts of heavy metals enter ecosystems and pollute soil and water. As a result, metals can be accumulated in plants and particularly in algae inhabiting peat bogs of low pH and high air humidity. In the present study, we investigated the impact and intracellular targets of aluminum, copper, cadmium, chromium VI and zinc on the filamentous green alga Desmidium swartzii, which is an important biomass producer in acid peat bogs. By means of transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) it is shown that all metals examined are taken up into Desmidium readily, where they are sequestered in cell walls and/or intracellular compartments. They cause effects on cell ultrastructure to different degrees and additionally disturb photosynthetic activity and biomass production. Our study shows a clear correlation between toxicity of a metal and the ability of the algae to compartmentalize it intracellularly. Cadmium and chromium, which are not compartmentalized, exert the most toxic effects. In addition, this study shows that the filamentous alga Desmidium reacts more sensitively to aluminum and zinc when compared to its unicellular relative Micrasterias, indicating a severe threat to the ecosystem.
Nanotoxicology | 2017
Yang Li; Zhenzhen Shi; Isabella Radauer-Preiml; Ancuela Andosch; Eudald Casals; Ursula Luetz-Meindl; Macarena Cobaleda; Zhoumeng Lin; Majid Jaberi-Douraki; Paola Italiani; Jutta Horejs-Hoeck; Martin Himly; Nancy A. Monteiro-Riviere; Albert Duschl; Victor Puntes; Diana Boraschi
Abstract Nanoparticles (NPs) are easily contaminated by bacterial endotoxin (lipopolysaccharide [LPS]). The presence of LPS can be responsible for many immune/inflammatory effects attributed to NPs. In this study, we examined the effects of LPS adsorption on the NP surface on the formation of a biocorona in biological fluids and on the subsequent inflammation-inducing activity of NPs. Different gold (Au) NPs with sizes ranging from 10 to 80 nm and with different surface functionalization (sodium citrate, lipoic acid, and branched polyethyleneimine (BPEI), or polyethylene glycol (PEG)) were exposed to E. coli LPS under different conditions. The binding capacity of LPS to the surface of AuNPs was dose- and time-dependent. LPS attached to sodium citrate and lipoic acid coatings, but did not adhere to BPEI- or PEG-coated NPs. By computational simulation, the binding of LPS to AuNPs seems to follow the Langmuir absorption isotherm. The presence of LPS on AuNP surface interfered and caused a decrease in the formation of the expected biomolecular corona upon incubation in human plasma. LPS-coated AuNPs, but not the LPS-free NPs, induced significant inflammatory responses in vitro. Notably, while free LPS did also induce an anti-inflammatory response, LPS bound to NPs appeared unable to do so. In conclusion, the unintentional adsorption of LPS onto the NP surface can affect the biocorona formation and the inflammatory properties of NPs. Thus, for an accurate interpretation of NP interactions with cells, it is extremely important to be able to distinguish the intrinsic NP biological effects from those caused by biologically active contaminants such as endotoxin.
Environmental Science & Technology | 2015
Linda C. Stoehr; Pierre Madl; Matthew Boyles; R. Zauner; M. Wimmer; Harald Wiegand; Ancuela Andosch; Gerhard Kasper; Markus Pesch; Ursula Lütz-Meindl; Martin Himly; Albert Duschl
Air pollution is associated with increased risk of cardiovascular and pulmonary diseases, but conventional air quality monitoring gives no information about biological consequences. Exposing human lung cells at the air-liquid interface (ALI) to ambient aerosol could help identify acute biological responses. This study investigated electrode-assisted deposition of diesel exhaust aerosol (DEA) on human lung epithelial cells (A549) in a prototype exposure chamber. A549 cells were exposed to DEA at the ALI and under submerged conditions in different electrostatic fields (EFs) and were assessed for cell viability, membrane integrity, and IL-8 secretion. Qualitative differences of the DEA and its deposition under different EFs were characterized using scanning mobility particle sizer (SMPS) measurements, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Upon exposure to DEA only, cell viability decreased and membrane impairment increased for cells at the ALI; submerged cells were unaffected. These responses were enhanced upon application of an EF, as was DEA deposition. No adverse effects were observed for filtered DEA or air only, confirming particle-induced responses. The prototype exposure chamber proved suitable for testing DEA-induced biological responses of cells at the ALI using electrode-assisted deposition and may be useful for analysis of other air pollutants.
International Journal of Molecular Sciences | 2018
Cornelia Roschger; Mario Schubert; Christof Regl; Ancuela Andosch; Augusto Márquez; Thomas Berger; Christian G. Huber; Ursula Lütz-Meindl; Chiara Cabrele
The inhibitor of DNA binding and cell differentiation 2 (Id2) is a helix-loop-helix (HLH) protein that acts as negative dominant regulator of basic-HLH transcription factors during development and in cancer. The structural properties of Id2 have been investigated so far by using synthetic or recombinant fragments reproducing single domains (N-terminus, HLH, C-terminus): the HLH domain tends to dimerize into a four-helix bundle, whereas the flanking regions are flexible. In this work, the intact protein was expressed in E. coli, solubilized from inclusion bodies with urea, purified and dissolved in water at pH~4. Under these conditions, Id2 was obtained with both cysteine residues disulfide-bonded to β-mercaptoethanol that was present during the solubilization process. Moreover, it existed in a self-assembled state, in which the N-terminus remained highly flexible, while the HLH domain and, surprisingly, part of the C-terminus, which corresponds to the nuclear export signal (NES), both were involved in slowly tumbling, rigid structures. The protein oligomers also formed twisted fibrils that were several micrometers long and up to 80 nm thick. These results show that self-assembly decreases the backbone flexibility of those two protein regions (HLH and NES) that are important for interaction with basic-HLH transcription factors or for nucleocytoplasmic shuttling.