Matthew C. Micsenyi
Albert Einstein College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew C. Micsenyi.
PLOS ONE | 2009
Cristin Davidson; Nafeeza F. Ali; Matthew C. Micsenyi; Gloria Stephney; Sophie Renault; Kostantin Dobrenis; Daniel S. Ory; Marie T. Vanier; Steven U. Walkley
Background Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused most commonly by a defect in the NPC1 protein and characterized by widespread intracellular accumulation of unesterified cholesterol and glycosphingolipids (GSLs). While current treatment therapies are limited, a few drugs tested in Npc1−/− mice have shown partial benefit. During a combination treatment trial using two such compounds, N-butyldeoxynojirimycin (NB-DNJ) and allopregnanolone, we noted increased lifespan for Npc1−/− mice receiving only 2-hydroxypropyl-β-cyclodextrin (CD), the vehicle for allopregnanolone. This finding suggested that administration of CD alone, but with greater frequency, might provide additional benefit. Methodology/Principal Findings Administration of CD to Npc1−/− mice beginning at either P7 or P21 and continuing every other day delayed clinical onset, reduced intraneuronal cholesterol and GSL storage as well as free sphingosine accumulation, reduced markers of neurodegeneration, and led to longer survival than any previous treatment regime. We reasoned that other lysosomal diseases characterized by cholesterol and GSL accumulation, including NPC disease due to NPC2 deficiency, GM1 gangliosidosis and mucopolysaccharidosis (MPS) type IIIA, might likewise benefit from CD treatment. Treated Npc2−/− mice showed benefits similar to NPC1 disease, however, mice with GM1 gangliosidosis or MPS IIIA failed to show reduction in storage. Conclusions/Significance Treatment with CD delayed clinical disease onset, reduced intraneuronal storage and secondary markers of neurodegeneration, and significantly increased lifespan of both Npc1−/− and Npc2−/− mice. In contrast, CD failed to ameliorate cholesterol or glycosphingolipid storage in GM1 gangliosidosis and MPS IIIA disease. Understanding the mechanism(s) by which CD leads to reduced neuronal storage may provide important new opportunities for treatment of NPC and related neurodegenerative diseases characterized by cholesterol dyshomeostasis.
Journal of Neuropathology and Experimental Neurology | 2009
Matthew C. Micsenyi; Kostantin Dobrenis; Gloria Stephney; James Pickel; Marie T. Vanier; Susan A. Slaugenhaupt; Steven U. Walkley
The recently developed Mcoln1−/− knockout mouse provides a novel model for analyzing mucolipin 1 function and mucolipidosis type IV disease. Here we characterize the neuropathology of Mcoln1−/− mouse at the end stage. Evidence of ganglioside accumulation, including increases in GM2, GM3, and GD3 and redistribution of GM1, was found throughout the central nervous system (CNS) independent of significant cholesterol accumulation. Unexpectedly, colocalization studies using immunofluorescence confocal microscopy revealed that GM1 and GM2 were present in separate vesicles within individual neurons. While GM2 was significantly colocalized with LAMP2, consistent with late-endosomal/lysosomal processing, some GM2-immunoreactivity occurred in LAMP2-negative sites, suggesting involvement of other vesicular systems. P62/Sequestosome 1 (P62/SQSTM1) inclusions were also identified in the CNS of the Mcoln1−/− mouse, suggesting deficiencies in protein degradation. Glial cell activation was increased in brain, and there was evidence of reduced myelination in cerebral and cerebellar white matter tracts. Autofluorescent material accumulated throughout the brains of the knockout mice. Finally, axonal spheroids were prevalent in white matter tracts and Purkinje cell axons. This neuropathological characterization of the Mcoln1−/− mouse provides an important step in understanding how mucolipin 1 loss of function affects the CNS and contributes to mucolipidosis type IV disease.
Brain | 2011
Petter Strømme; Kostantin Dobrenis; Roy V. Sillitoe; Maria Gulinello; Nafeeza F. Ali; Cristin Davidson; Matthew C. Micsenyi; Gloria Stephney; Linda Ellevog; Arne Klungland; Steven U. Walkley
Mutations in solute carrier family 9 isoform 6 on chromosome Xq26.3 encoding sodium–hydrogen exchanger 6, a protein mainly expressed in early and recycling endosomes are known to cause a complex and slowly progressive degenerative human neurological disease. Three resulting phenotypes have so far been reported: an X-linked Angelman syndrome-like condition, Christianson syndrome and corticobasal degeneration with tau deposition, with each characterized by severe intellectual disability, epilepsy, autistic behaviour and ataxia. Hypothesizing that a sodium–hydrogen exchanger 6 deficiency would most likely disrupt the endosomal–lysosomal system of neurons, we examined Slc9a6 knockout mice with tissue staining and related techniques commonly used to study lysosomal storage disorders. As a result, we found that sodium–hydrogen exchanger 6 depletion leads to abnormal accumulation of GM2 ganglioside and unesterified cholesterol within late endosomes and lysosomes of neurons in selective brain regions, most notably the basolateral nuclei of the amygdala, the CA3 and CA4 regions and dentate gyrus of the hippocampus and some areas of cerebral cortex. In these select neuronal populations, histochemical staining for β-hexosaminidase activity, a lysosomal enzyme involved in the degradation of GM2 ganglioside, was undetectable. Neuroaxonal dystrophy similar to that observed in lysosomal disease was observed in the cerebellum and was accompanied by a marked and progressive loss of Purkinje cells, particularly in those lacking the expression of Zebrin II. On behavioural testing, Slc9a6 knockout mice displayed a discrete clinical phenotype attributable to motor hyperactivity and cerebellar dysfunction. Importantly, these findings show that sodium–hydrogen exchanger 6 loss of function in the Slc9a6-targeted mouse model leads to compromise of endosomal–lysosomal function similar to lysosomal disease and to conspicuous neuronal abnormalities in specific brain regions, which in concert could provide a unified explanation for the cellular and clinical phenotypes in humans with SLC9A6 mutations.
Neurobiology of Disease | 2010
Cyntia Curcio-Morelli; Florie A. Charles; Matthew C. Micsenyi; Yi Cao; Bhuvarahamurthy Venugopal; Marsha F. Browning; Kostantin Dobrenis; Susan L. Cotman; Steven U. Walkley; Susan A. Slaugenhaupt
Mucolipidosis type IV is a neurodegenerative lysosomal disease clinically characterized by psychomotor retardation, visual impairment, and achlorhydria. In this study we report the development of a neuronal cell model generated from cerebrum of Mcoln1(-/-) embryos. Prior functional characterization of MLIV cells has been limited to fibroblast cultures gleaned from patients. The current availability of the mucolipin-1 knockout mouse model Mcoln1(-/-) allows the study of mucolipin-1-defective neurons, which is important since the disease is characterized by severe neurological impairment. Electron microscopy studies reveal significant membranous intracytoplasmic storage bodies, which correlate with the storage morphology observed in cerebral cortex of Mcoln1(-/-) P7 pups and E17 embryos. The Mcoln1(-/-) neuronal cultures show an increase in size of LysoTracker and Lamp1 positive vesicles. Using this neuronal model system, we show that macroautophagy is defective in mucolipin-1-deficient neurons and that LC3-II levels are significantly elevated. Treatment with rapamycin plus protease inhibitors did not increase levels of LC3-II in Mcoln1(-/-) neuronal cultures, indicating that the lack of mucolipin-1 affects LC3-II clearance. P62/SQSTM1 and ubiquitin levels were also increased in Mcoln1(-/-) neuronal cultures, suggesting an accumulation of protein aggregates and a defect in macroautophagy which could help explain the neurodegeneration observed in MLIV. This study describes, for the first time, a defect in macroautophagy in mucolipin-1-deficient neurons, which corroborates recent findings in MLIV fibroblasts and provides new insight into the neuronal pathogenesis of this disease.
The Journal of Neuroscience | 2013
Matthew C. Micsenyi; Jakub Sikora; Gloria Stephney; Kostantin Dobrenis; Steven U. Walkley
Protein aggregates are a common pathological feature of neurodegenerative diseases and several lysosomal diseases, but it is currently unclear what aggregates represent for pathogenesis. Here we report the accumulation of intraneuronal aggregates containing the macroautophagy adapter proteins p62 and NBR1 in the neurodegenerative lysosomal disease late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). CLN2 disease is caused by a deficiency in the lysosomal enzyme tripeptidyl peptidase I, which results in aberrant lysosomal storage of catabolites, including the subunit c of mitochondrial ATP synthase (SCMAS). In an effort to define the role of aggregates in CLN2, we evaluated p62 and NBR1 accumulation in the CNS of Cln2−/− mice. Although increases in p62 and NBR1 often suggest compromised degradative mechanisms, we found normal ubiquitin–proteasome system function and only modest inefficiency in macroautophagy late in disease. Importantly, we identified that SCMAS colocalizes with p62 in extra-lysosomal aggregates in Cln2−/− neurons in vivo. This finding is consistent with SCMAS being released from lysosomes, an event known as lysosomal membrane permeability (LMP). We predicted that LMP and storage release from lysosomes results in the sequestration of this material as cytosolic aggregates by p62 and NBR1. Notably, LMP induction in primary neuronal cultures generates p62-positive aggregates and promotes p62 localization to lysosomal membranes, supporting our in vivo findings. We conclude that LMP is a previously unrecognized pathogenic event in CLN2 disease that stimulates cytosolic aggregate formation. Furthermore, we offer a novel role for p62 in response to LMP that may be relevant for other diseases exhibiting p62 accumulation.
Biochemical Society Transactions | 2010
Steven U. Walkley; Jakub Sikora; Matthew C. Micsenyi; Cristin Davidson; Kostantin Dobrenis
Lysosomal diseases are a family of over 50 disorders caused by defects in proteins critical for normal function of the endosomal/lysosomal system and characterized by complex pathogenic cascades involving progressive dysfunction of many organ systems, most notably the brain. Evidence suggests that compromise in lysosomal function is highly varied and leads to changes in multiple substrate processing and endosomal signalling, in calcium homoeostasis and endoplasmic reticulum stress, and in autophagocytosis and proteasome function. Neurons are highly vulnerable and show abnormalities in perikarya, dendrites and axons, often in ways seemingly unrelated to the primary lysosomal defect. A notable example is NAD (neuroaxonal dystrophy), which is characterized by formation of focal enlargements (spheroids) containing diverse organelles and other components consistent with compromise of retrograde axonal transport. Although neurons may be universally susceptible to NAD, GABAergic neurons, particularly Purkinje cells, appear most vulnerable and ataxia and related features of cerebellar dysfunction are a common outcome. As NAD is found early in disease and thus may be a contributor to Purkinje cell dysfunction and death, understanding its link to lysosomal compromise could lead to therapies designed to prevent its occurrence and thereby ameliorate cerebellar dysfunction.
Lysosomal Storage Disorders: A Practical Guide | 2012
Matthew C. Micsenyi; Steven U. Walkley
American Journal of Pathology | 2017
Jakub Sikora; Shaalee Dworski; E. Ellen Jones; Mustafa Kamani; Matthew C. Micsenyi; Tomo Sawada; Pauline Le Faouder; Justine Bertrand-Michel; Aude Dupuy; Christopher K. Dunn; Ingrid Cong Yang Xuan; Josefina Casas; Gemma Fabriàs; David R. Hampson; Thierry Levade; Richard R. Drake; Jeffrey A. Medin; Steven U. Walkley
Molecular Genetics and Metabolism | 2015
Shaalee Dworski; Elizabeth E. Jones; Jakub Sikora; Matthew C. Micsenyi; Tomo Sawada; Pauline Le Faouder; Justine Bertrand-Michel; Aude Dupuy; Mustafa Kamani; Christopher K. Dunn; Ingrid Xuan; David R. Hampson; Stéphane Carpentier; Josefina Casas; Gemma Fabriàs; Richard R. Drake; Steven U. Walkley; Thierry Levade; Jeffrey A. Medin
Molecular Genetics and Metabolism | 2014
Tomo Sawada; Shaalee Dworski; Jakub Sikora; Matthew C. Micsenyi; Jeffrey A. Medin; Steven U. Walkley; David R. Hampson