Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven U. Walkley is active.

Publication


Featured researches published by Steven U. Walkley.


PLOS ONE | 2009

Chronic Cyclodextrin Treatment of Murine Niemann-Pick C Disease Ameliorates Neuronal Cholesterol and Glycosphingolipid Storage and Disease Progression

Cristin Davidson; Nafeeza F. Ali; Matthew C. Micsenyi; Gloria Stephney; Sophie Renault; Kostantin Dobrenis; Daniel S. Ory; Marie T. Vanier; Steven U. Walkley

Background Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused most commonly by a defect in the NPC1 protein and characterized by widespread intracellular accumulation of unesterified cholesterol and glycosphingolipids (GSLs). While current treatment therapies are limited, a few drugs tested in Npc1−/− mice have shown partial benefit. During a combination treatment trial using two such compounds, N-butyldeoxynojirimycin (NB-DNJ) and allopregnanolone, we noted increased lifespan for Npc1−/− mice receiving only 2-hydroxypropyl-β-cyclodextrin (CD), the vehicle for allopregnanolone. This finding suggested that administration of CD alone, but with greater frequency, might provide additional benefit. Methodology/Principal Findings Administration of CD to Npc1−/− mice beginning at either P7 or P21 and continuing every other day delayed clinical onset, reduced intraneuronal cholesterol and GSL storage as well as free sphingosine accumulation, reduced markers of neurodegeneration, and led to longer survival than any previous treatment regime. We reasoned that other lysosomal diseases characterized by cholesterol and GSL accumulation, including NPC disease due to NPC2 deficiency, GM1 gangliosidosis and mucopolysaccharidosis (MPS) type IIIA, might likewise benefit from CD treatment. Treated Npc2−/− mice showed benefits similar to NPC1 disease, however, mice with GM1 gangliosidosis or MPS IIIA failed to show reduction in storage. Conclusions/Significance Treatment with CD delayed clinical disease onset, reduced intraneuronal storage and secondary markers of neurodegeneration, and significantly increased lifespan of both Npc1−/− and Npc2−/− mice. In contrast, CD failed to ameliorate cholesterol or glycosphingolipid storage in GM1 gangliosidosis and MPS IIIA disease. Understanding the mechanism(s) by which CD leads to reduced neuronal storage may provide important new opportunities for treatment of NPC and related neurodegenerative diseases characterized by cholesterol dyshomeostasis.


Current Biology | 2001

Critical role for glycosphingolipids in Niemann-Pick disease type C

Mark Zervas; Kyra L Somers; Mary Anna Thrall; Steven U. Walkley

Niemann-Pick type C (NPC) disease is a cholesterol lipidosis caused by mutations in NPC1 and NPC2 gene loci. Most human cases are caused by defects in NPC1, as are the spontaneously occurring NPC diseases in mice and cats. NPC1 protein possesses a sterol-sensing domain and has been localized to vesicles that are believed to facilitate the recycling of unesterified cholesterol from late endosomes/lysosomes to the ER and Golgi. In addition to accumulating cholesterol, NPC1-deficient cells also accumulate gangliosides and other glycosphingolipids (GSLs), and neuropathological abnormalities in NPC disease closely resemble those seen in primary gangliosidoses. These findings led us to hypothesize that NPC1 may also function in GSL homeostasis. To evaluate this possibility, we treated murine and feline NPC models with N-butyldeoxynojirimycin (NB-DNJ), an inhibitor of glucosylceramide synthase, a pivotal enzyme in the early GSL synthetic pathway. Treated animals showed delayed onset of neurological dysfunction, increased average life span (in mice), and reduced ganglioside accumulation and accompanying neuropathological changes. These results are consistent with our hypothesis and with GSLs being centrally involved in the pathogenesis of NPC disease, and they suggest that drugs inhibiting GSL synthesis could have a similar ameliorating effect on the human disorder.


The Journal of Comparative Neurology | 2004

Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders.

Robert McGlynn; Kostantin Dobrenis; Steven U. Walkley

The mucopolysaccharidoses (MPSs) are a complex family of lysosomal storage disorders characterized by failure to degrade heparan sulfate (HS) and/or other types of glycosaminoglycans (GAGs) secondary to the absence of specific lysosomal enzymes. An accompanying storage of glycosphingolipids (GSLs), most notably GM2 and GM3 gangliosides, has also been documented to occur in many types of MPS disease and is believed to be caused by secondary inhibition of GSL‐degradative enzymes by intracellular GAG accumulation. We have documented the presence of secondary ganglioside accumulation in mouse models of several MPS disorders (types I, IIIA, IIIB, and VII) and report that this storage is accompanied by sequestration of free cholesterol in a manner similar to that observed in primary gangliosidoses. Using confocal microscopy, we evaluated the cellular distribution of cholesterol, GM2 and GM3 gangliosides, and HS in brains of mice with MPS IIIA disease. Unexpectedly, we found that although both gangliosides often accumulated in the same neurons, they were consistently located in separate populations of cytoplasmic vesicles. Additionally, GM3 ganglioside only partially co‐localized with the primary storage material (HS), and cholesterol likewise only partially co‐localized with the GM2 and GM3 gangliosides. These findings raise significant questions about the mechanism(s) responsible for secondary accumulation of storage materials in MPS disease. Furthermore, given that GSLs and cholesterol are constituents of membrane rafts believed critical in signal transduction events in neurons, their co‐sequestration in individual neurons suggests the presence of defects in the composition, trafficking, and/or recycling of raft components and thus possible new mechanisms to explain neuronal dysfunction in MPS disorders. J. Comp. Neurol. 480:415–426, 2004.


Autophagy | 2012

Autophagy in lysosomal storage disorders

Andrew P. Lieberman; Rosa Puertollano; Nina Raben; Susan A. Slaugenhaupt; Steven U. Walkley; Andrea Ballabio

Lysosomes are ubiquitous intracellular organelles that have an acidic internal pH, and play crucial roles in cellular clearance. Numerous functions depend on normal lysosomes, including the turnover of cellular constituents, cholesterol homeostasis, downregulation of surface receptors, inactivation of pathogenic organisms, repair of the plasma membrane and bone remodeling. Lysosomal storage disorders (LSDs) are characterized by progressive accumulation of undigested macromolecules within the cell due to lysosomal dysfunction. As a consequence, many tissues and organ systems are affected, including brain, viscera, bone and cartilage. The progressive nature of phenotype development is one of the hallmarks of LSDs. In recent years biochemical and cell biology studies of LSDs have revealed an ample spectrum of abnormalities in a variety of cellular functions. These include defects in signaling pathways, calcium homeostasis, lipid biosynthesis and degradation and intracellular trafficking. Lysosomes also play a fundamental role in the autophagic pathway by fusing with autophagosomes and digesting their content. Considering the highly integrated function of lysosomes and autophagosomes it was reasonable to expect that lysosomal storage in LSDs would have an impact upon autophagy. The goal of this review is to provide readers with an overview of recent findings that have been obtained through analysis of the autophagic pathway in several types of LSDs, supporting the idea that LSDs could be seen primarily as “autophagy disorders.”


Brain Pathology | 2006

Cellular Pathology of Lysosomal Storage Disorders

Steven U. Walkley

Lysosomal storage disorders are rare, inborn errors of metabolism characterized by intralysosomal accumulation of unmetabolized compounds. The brain is commonly a central focus of the disease process and children and animals affected by these disorders often exhibit progressively severe neurological abnormalities. Although most storage diseases result from loss of activity of a single enzyme responsible for a single catabolic step in a single organelle, the lysosome, the overall features of the resulting disease belies this simple beginning. These are enormously complex disorders with metabolic and functional consequences that go far beyond the lysosome and impact both soma‐dendritic and axonal domains of neurons in highly neuron type‐specific ways. Cellular pathological changes include growth of ectopic dendrites and new synaptic connections and formation of enlargements in axons far distant from the lysosomal defect. Other storage diseases exhibit neuron death, also occurring in a cell‐selective manner. The functional links between known molecular genetic and enzyme defects and changes in neuronal integrity remain largely unknown. Future studies on the biology of lysosomal storage diseases affecting the brain can be anticipated to provide insights not only into these pathogenic mechanisms, but also into the role of lysosomes and related organelles in normal neuron function.


Biochimica et Biophysica Acta | 2009

Secondary lipid accumulation in lysosomal disease

Steven U. Walkley; Marie T. Vanier

Lysosomal diseases are inherited metabolic disorders caused by defects in a wide spectrum of lysosomal and a few non-lysosomal proteins. In most cases a single type of primary storage material is identified, which has been used to name and classify the disorders: hence the terms sphingolipidoses, gangliosidoses, mucopolysaccharidoses, glycoproteinoses, and so forth. In addition to this primary storage, however, a host of secondary storage products can also be identified, more often than not having no direct link to the primary protein defect. Lipids - glycosphingolipids and phospholipids, as well as cholesterol - are the most ubiquitous and best studied of these secondary storage materials. While in the past typically considered nonspecific and nonconsequential features of these diseases, newer studies suggest direct links between secondary storage and disease pathogenesis and support the view that understanding all aspects of this sequestration process will provide important insights into the cell biology and treatment of lysosomal disease.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Pregnane X receptor (PXR) activation: A mechanism for neuroprotection in a mouse model of Niemann–Pick C disease

S. Joshua Langmade; Sarah E. Gale; Andrey Frolov; Ikuko Mohri; Kinuko Suzuki; Synthia H. Mellon; Steven U. Walkley; Douglas F. Covey; Jean E. Schaffer; Daniel S. Ory

Niemann–Pick type C1 (NPC1) disease is a fatal neurodegenerative disease characterized by neuronal lipid storage and progressive Purkinje cell loss in the cerebellum. We investigated whether therapeutic approaches to bypass the cholesterol trafficking defect in NPC1 disease might delay disease progression in the npc1−/− mouse model. We show that the neurosteroid allopregnanolone (ALLO) and T0901317, a synthetic oxysterol ligand, act in concert to delay onset of neurological symptoms and prolong the lifespan of npc1−/− mice. ALLO and T0901317 therapy preserved Purkinje cells, suppressed cerebellar expression of microglial-associated genes and inflammatory mediators, and reduced infiltration of activated microglia in the cerebellar tissue. To establish whether the mechanism of neuroprotection in npc1−/− mice involves GABAA receptor activation, we compared treatment of natural ALLO and ent-ALLO, a stereoisomer that has identical physical properties of natural ALLO but is not a GABAA receptor agonist. ent-ALLO provided identical functional and survival benefits as natural ALLO in npc1−/− mice, strongly supporting a GABAA receptor-independent mechanism for ALLO action. On the other hand, the efficacy of ALLO, ent-ALLO, and T0901317 therapy correlated with the ability of these compounds to activate pregnane X receptor-dependent pathways in vivo. These findings suggest that treatment with pregnane X receptor ligands may be useful clinically in delaying the progressive neurodegeneration in human NPC disease.


Journal of Inherited Metabolic Disease | 2009

Pathogenic cascades in lysosomal disease-Why so complex?

Steven U. Walkley

SummaryLysosomal disease represents a large group of more than 50 clinically recognized conditions resulting from inborn errors of metabolism affecting the organelle known as the lysosome. The lysosome is an integral part of the larger endosomal/lysosomal system, and is closely allied with the ubiquitin–proteosomal and autophagosomal systems, which together comprise essential cell machinery for substrate degradation and recycling, homeostatic control, and signalling. More than two-thirds of lysosomal diseases affect the brain, with neurons appearing particularly vulnerable to lysosomal compromise and showing diverse consequences ranging from specific axonal and dendritic abnormalities to neuron death. While failure of lysosomal function characteristically leads to lysosomal storage, new studies argue that lysosomal diseases may also be appropriately viewed as ‘states of deficiency’ rather than simply overabundance (storage). Interference with signalling events and salvage processing normally controlled by the endosomal/lysosomal system may represent key mechanisms accounting for the inherent complexity of lysosomal disorders. Analysis of lysosomal disease pathogenesis provides a unique window through which to observe the importance of the greater lysosomal system for normal cell health.


American Journal of Human Genetics | 2007

Neurologic, Gastric, and Opthalmologic Pathologies in a Murine Model of Mucolipidosis Type IV

Bhuvarahamurthy Venugopal; Marsha F. Browning; Cyntia Curcio-Morelli; Andrea Varro; Norman Michaud; N. Nanda Nanthakumar; Steven U. Walkley; James Pickel; Susan A. Slaugenhaupt

Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder caused by mutations in the MCOLN1 gene, which encodes the 65-kDa protein mucolipin-1. The most common clinical features of patients with MLIV include severe mental retardation, delayed motor milestones, ophthalmologic abnormalities, constitutive achlorhydria, and elevated plasma gastrin levels. Here, we describe the first murine model for MLIV, which accurately replicates the phenotype of patients with MLIV. The Mcoln1(-/-) mice present with numerous dense inclusion bodies in all cell types in brain and particularly in neurons, elevated plasma gastrin, vacuolization in parietal cells, and retinal degeneration. Neurobehavioral assessments, including analysis of gait and clasping, confirm the presence of a neurological defect. Gait deficits progress to complete hind-limb paralysis and death at age ~8 mo. The Mcoln1(-/-) mice are born in Mendelian ratios, and both male and female Mcoln1(-/-) mice are fertile and can breed to produce progeny. The creation of the first murine model for human MLIV provides an excellent system for elucidating disease pathogenesis. In addition, this model provides an invaluable resource for testing treatment strategies and potential therapies aimed at preventing or ameliorating the abnormal lysosomal storage in this devastating neurological disorder.


Science Translational Medicine | 2015

Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease

Charles H. Vite; Bagel Jh; Swain Gp; Prociuk M; Sikora Tu; Stein Vm; O'Donnell P; Ruane T; Ward S; Crooks A; Li S; Mauldin E; Stellar S; De Meulder M; Mark L. Kao; Daniel S. Ory; Cristin Davidson; Vanier Mt; Steven U. Walkley

Intracisternal injection of cyclodextrin into cats with Niemann-Pick type C1 disease results in Purkinje cell survival and normal neurological function, suggesting its usefulness for treating the human disease. Cyclodextrin to the rescue Niemann-Pick type C1 (NPC) disease is a severe hereditary nervous system disorder associated with the storage of cholesterol and other lipids inside nervous tissue. In new work, Vite et al. show that injection of the pharmaceutical excipient cyclodextrin into the spinal fluid of cats with naturally occurring NPC disease prevented lipids from accumulating and prevented nervous system disease from developing. The only side effect found was a loss of hearing acuity associated with therapy. This study in the cat model provides critical data on efficacy and safety of cyclodextrin administration directly into the spinal fluid that will be important for advancing this drug into clinical trials. Niemann-Pick type C1 (NPC) disease is a lysosomal storage disease caused by mutations in the NPC1 gene, leading to an increase in unesterified cholesterol and several sphingolipids, and resulting in hepatic disease and progressive neurological disease. We show that subcutaneous administration of the pharmaceutical excipient 2-hydroxypropyl-β-cyclodextrin (HPβCD) to cats with NPC disease ameliorated hepatic disease, but doses sufficient to reduce neurological disease resulted in pulmonary toxicity. However, direct administration of HPβCD into the cisterna magna of presymptomatic cats with NPC disease prevented the onset of cerebellar dysfunction for greater than a year and resulted in a reduction in Purkinje cell loss and near-normal concentrations of cholesterol and sphingolipids. Moreover, administration of intracisternal HPβCD to NPC cats with ongoing cerebellar dysfunction slowed disease progression, increased survival time, and decreased the accumulation of brain gangliosides. An increase in hearing threshold was identified as a potential adverse effect. These studies in a feline animal model have provided critical data on efficacy and safety of drug administration directly into the central nervous system that will be important for advancing HPβCD into clinical trials.

Collaboration


Dive into the Steven U. Walkley's collaboration.

Top Co-Authors

Avatar

Kostantin Dobrenis

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Cristin Davidson

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Daniel S. Ory

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Matthew C. Micsenyi

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Charles H. Vite

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Donald A. Siegel

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Forbes D. Porter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sarah Wurzelmann

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Gloria Stephney

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge