Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew C. Wheeler is active.

Publication


Featured researches published by Matthew C. Wheeler.


Monthly Weather Review | 2004

An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction

Matthew C. Wheeler; Harry H. Hendon

Abstract A seasonally independent index for monitoring the Madden–Julian oscillation (MJO) is described. It is based on a pair of empirical orthogonal functions (EOFs) of the combined fields of near-equatorially averaged 850-hPa zonal wind, 200-hPa zonal wind, and satellite-observed outgoing longwave radiation (OLR) data. Projection of the daily observed data onto the multiple-variable EOFs, with the annual cycle and components of interannual variability removed, yields principal component (PC) time series that vary mostly on the intraseasonal time scale of the MJO only. This projection thus serves as an effective filter for the MJO without the need for conventional time filtering, making the PC time series an effective index for real-time use. The pair of PC time series that form the index are called the Real-time Multivariate MJO series 1 (RMM1) and 2 (RMM2). The properties of the RMM series and the spatial patterns of atmospheric variability they capture are explored. Despite the fact that RMM1 and RMM...


Journal of the Atmospheric Sciences | 1999

Convectively coupled equatorial waves : Analysis of clouds and temperature in the wavenumber-frequency domain

Matthew C. Wheeler; George N. Kiladis

A wavenumber-frequency spectrum analysis is performed for all longitudes in the domain 158S‐158N using a long (;18 years) twice-daily record of satellite-observed outgoing longwave radiation (OLR), a good proxy for deep tropical convection. The broad nature of the spectrum is red in both zonal wavenumber and frequency. By removing an estimated background spectrum, numerous statistically significant spectral peaks are isolated. Some of the peaks correspond quite well to the dispersion relations of the equatorially trapped wave modes of shallow water theory with implied equivalent depths in the range of 12‐50 m. Cross-spectrum analysis with the satellite-based microwave sounding unit deep-layer temperature data shows that these spectral peaks in the OLR are ‘‘coupled’’ with this dynamical field. The equivalent depths of the convectively coupled waves are shallower than those typical of equatorial waves uncoupled with convection. Such a small equivalent depth is thought to be a result of the interaction between convection and the dynamics. The convectively coupled equatorial waves identified correspond to the Kelvin, n 5 1 equatorial Rossby, mixed Rossby-gravity, n 5 0 eastward inertiogravity, n 5 1 westward inertio-gravity (WIG), and n 5 2 WIG waves. Additionally, the Madden‐Julian oscillation and tropical depression-type disturbances are present in the OLR spectra. These latter two features are unlike the convectively coupled equatorial waves due to their location away from the equatorial wave dispersion curves in the wavenumber-frequency domain. Extraction of the different convectively coupled disturbances in the time‐longitude domain is performed by filtering the OLR dataset for very specific zonal wavenumbers and frequencies. The geographical distribution of the variance of these filtered data gives further evidence that some of the spectral peaks correspond to particular equatorial wave modes. The results have implications for the cumulus parameterization problem, for the excitation of equatorial waves in the lower stratosphere, and for extended-range forecasting in the Tropics.


Journal of Climate | 2006

Tropical Intraseasonal Variability in 14 IPCC AR4 Climate Models Part I: Convective Signals

Jia-Lin Lin; George N. Kiladis; Brian E. Mapes; Klaus M. Weickmann; Kenneth R. Sperber; Wuyin Lin; Matthew C. Wheeler; Siegfried D. Schubert; Anthony D. Del Genio; Leo J. Donner; Seita Emori; Jean-Francois Gueremy; Frederic Hourdin; Philip J. Rasch; Erich Roeckner; J. F. Scinocca

Abstract This study evaluates the tropical intraseasonal variability, especially the fidelity of Madden–Julian oscillation (MJO) simulations, in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of daily precipitation from each model’s twentieth-century climate simulation are analyzed and compared with daily satellite-retrieved precipitation. Space–time spectral analysis is used to obtain the variance and phase speed of dominant convectively coupled equatorial waves, including the MJO, Kelvin, equatorial Rossby (ER), mixed Rossby–gravity (MRG), and eastward inertio–gravity (EIG) and westward inertio–gravity (WIG) waves. The variance and propagation of the MJO, defined as the eastward wavenumbers 1–6, 30–70-day mode, are examined in detail. The results show that current state-of-the-art GCMs still have significant problems and display a wide range of skill in simulating the tropical intraseasonal va...


Monthly Weather Review | 2009

On the Remote Drivers of Rainfall Variability in Australia

James S. Risbey; Michael J. Pook; Peter C. McIntosh; Matthew C. Wheeler; Harry H. Hendon

Abstract This work identifies and documents a suite of large-scale drivers of rainfall variability in the Australian region. The key driver in terms of broad influence and impact on rainfall is the El Nino–Southern Oscillation (ENSO). ENSO is related to rainfall over much of the continent at different times, particularly in the north and east, with the regions of influence shifting with the seasons. The Indian Ocean dipole (IOD) is particularly important in the June–October period, which spans much of the wet season in the southwest and southeast where IOD has an influence. ENSO interacts with the IOD in this period such that their separate regions of influence cover the entire continent. Atmospheric blocking also becomes most important during this period and has an influence on rainfall across the southern half of the continent. The Madden–Julian oscillation can influence rainfall in different parts of the continent in different seasons, but its impact is strongest on the monsoonal rains in the north. Th...


Journal of the Atmospheric Sciences | 2000

Large-Scale Dynamical Fields Associated with Convectively Coupled Equatorial Waves

Matthew C. Wheeler; George N. Kiladis; Peter J. Webster

Abstract Convectively coupled equatorial waves, as previously detected in studies of wavenumber-frequency spectra of tropical clouds, are studied in more detail. Composite dynamical structures of the waves are obtained using linear regression between selectively filtered satellite-observed outgoing longwave radiation (OLR) data, and various fields from a global reanalysis dataset. The selective filtering of the OLR was designed to isolate the convective variations contributing to spectral peaks that lie along the equatorial wave dispersion curves for equivalent depths in the range of 12–50 m. The waves studied are the Kelvin, n = 1 equatorial Rossby (ER), mixed Rossby–gravity, n = 0 eastward inertio–gravity, n = 1 westward inertio–gravity (WIG), and n = 2 WIG waves. The horizontal structures of the dynamical fields associated with the waves are all generally consistent with those calculated from inviscid equatorial β-plane shallow water theory. In the vertical, there are statistically significant structur...


Journal of Climate | 2007

Australian Rainfall and Surface Temperature Variations Associated with the Southern Hemisphere Annular Mode

Harry H. Hendon; David W. J. Thompson; Matthew C. Wheeler

Abstract Daily variations in Australian rainfall and surface temperature associated with the Southern Hemisphere annular mode (SAM) are documented using observations for the period 1979–2005. The high index polarity of the SAM is characterized by a poleward contraction of the midlatitude westerlies. During winter, the high index polarity of the SAM is associated with decreased daily rainfall over southeast and southwest Australia, but during summer it is associated with increased daily rainfall on the southern east coast of Australia and decreased rainfall in western Tasmania. Variations in the SAM explain up to ∼15% of the weekly rainfall variance in these regions, which is comparable to the variance accounted for by the El Nino–Southern Oscillation, especially during winter. The most widespread temperature anomalies associated with the SAM occur during the spring and summer seasons, when the high index polarity of the SAM is associated with anomalously low maximum temperature over most of central/easter...


Journal of Climate | 2009

MJO Simulation Diagnostics

Duane E. Waliser; Kenneth R. Sperber; Harry H. Hendon; Daehyun Kim; Eric D. Maloney; Matthew C. Wheeler; Klaus M. Weickmann; Chidong Zhang; Leo J. Donner; J. Gottschalck; Wayne Higgins; I-S Kang; D. Legler; Mitchell W. Moncrieff; Siegfried D. Schubert; W Stern; F. Vitart; Bin Wang; Wanqiu Wang; Steven J. Woolnough

The Madden–Julian oscillation (MJO) interacts with and influences a wide range of weather and climate phenomena (e.g., monsoons, ENSO, tropical storms, midlatitude weather), and represents an important, and as yet unexploited, source of predictability at the subseasonal time scale. Despite the important role of the MJO in climate and weather systems, current global circulation models (GCMs) exhibit considerable shortcomings in representing this phenomenon. These shortcomings have been documented in a number of multimodel comparison studies over the last decade. However, diagnosis of model performance has been challenging, and model progress has been difficult to track, because of the lack of a coherent and standardized set of MJO diagnostics. One of the chief objectives of the U.S. Climate Variability and Predictability (CLIVAR) MJO Working Group is the development of observation-based diagnostics for objectively evaluating global model simulations of the MJO in a consistent framework. Motivation for this activity is reviewed, and the intent and justification for a set of diagnostics is provided, along with specification for their calculation, and illustrations of their application. The diagnostics range from relatively simple analyses of variance and correlation to more sophisticated space–time spectral and empirical orthogonal function analyses. These diagnostic techniques are used to detect MJO signals, to construct composite life cycles, to identify associations of MJO activity with the mean state, and to describe interannual variability of the MJO.


Journal of Climate | 2007

Seasonal Dependence of the MJO-ENSO Relationship

Harry H. Hendon; Matthew C. Wheeler; Chidong Zhang

Abstract Observations of the development of recent El Nino events suggest a pivotal role for the Madden–Julian oscillation (MJO). Previous attempts to uncover a systematic relationship between MJO activity and the El Nino–Southern Oscillation (ENSO), however, have yielded conflicting results. In this study the MJO–ENSO relationship is stratified by season, and the focus is on MJO activity in the equatorial western Pacific. The results demonstrate that MJO activity in late boreal spring leads El Nino in the subsequent autumn–winter for the period 1979–2005. Spring is the season when MJO activity is least asymmetric with respect to the equator and displays the most sensitivity to SST variations at the eastern edge of the warm pool. Enhanced MJO activity in the western Pacific in spring is associated with an eastward-expanded warm pool and low-frequency westerly surface zonal wind anomalies. These sustained westerly anomalies in the western Pacific are hypothesized to project favorably onto a developing El N...


Monthly Weather Review | 2006

Modulation of South Indian Ocean Tropical Cyclones by the Madden–Julian Oscillation and Convectively Coupled Equatorial Waves

Miloud Bessafi; Matthew C. Wheeler

Abstract The subseasonal modulation of tropical cyclone (TC) genesis by large-scale atmospheric wave modes is studied using data from the south Indian Ocean region. The modes considered are the Madden–Julian oscillation (MJO), and the convectively coupled equatorial Rossby (ER), Kelvin, and mixed Rossby–gravity (MRG) waves. Analysis of all TCs west of 100°E reveals a large and statistically significant modulation by the MJO and ER waves, a small yet significant modulation by Kelvin waves, and a statistically insignificant modulation by MRG waves. Attribution of the observed TC modulation was made through examination of the wave-induced perturbations to the dynamical fields of low-level vorticity, vertical shear, and deep convection. Possible thermodynamic influences on TC genesis were neglected. Different combinations of the three dynamical fields were necessary for successful attribution for each of the large-scale wave modes. For example, for the MJO, the modulation was best attributable to its perturba...


Journal of the Atmospheric Sciences | 2009

Diagnosis of the MJO Modulation of Tropical Cyclogenesis Using an Empirical Index

Suzana J. Camargo; Matthew C. Wheeler; Adam H. Sobel

The modulation of tropical cyclone activity by the Madden‐Julian oscillation (MJO) is explored using an empirical genesis potential (GP) index. Composite anomalies of the genesis index associated with the different MJO phases are consistent with the composite anomalies in TC genesis frequency that occur in the same phases, indicating that the index captures the changes in the environment that are at least in part responsible for the genesis frequency changes. Of the four environmental variables that enter the genesis potential index, the midlevel relative humidity makes the largest contribution to the MJO composite GP anomalies. The second largest contribution comes from the low-level absolute vorticity, and only very minor contributions come from the vertical wind shear and potential intensity. When basin-integrated MJO composite anomalies of the GP index are regressed against basin-integrated composite anomalies of TC genesis frequency, the results differ quantitatively from those obtained from the analogous calculation performed on the annual climatologies in the two quantities. The GP index captures the MJO modulation of TC genesis to a lesser degree than the climatological annual cycle of genesis (to which it was originally tuned). This may be due to weaknesses of the reanalysis or indicative of the importance of precursor disturbances, not well captured in the GP index computed from weekly data, to the intraseasonal TC genesis frequency fluctuations.

Collaboration


Dive into the Matthew C. Wheeler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duane E. Waliser

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth R. Sperber

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Klaus M. Weickmann

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

F. Vitart

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Brendan Power

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Joachim Ribbe

University of Southern Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge