Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Downs is active.

Publication


Featured researches published by Matthew Downs.


PLOS ONE | 2015

Long-Term Safety of Repeated Blood-Brain Barrier Opening via Focused Ultrasound with Microbubbles in Non-Human Primates Performing a Cognitive Task

Matthew Downs; Amanda Buch; Carlos Sierra; Maria Eleni Karakatsani; Shangshang Chen; Elisa E. Konofagou; Vincent P. Ferrera

Focused Ultrasound (FUS) coupled with intravenous administration of microbubbles (MB) is a non-invasive technique that has been shown to reliably open (increase the permeability of) the blood-brain barrier (BBB) in multiple in vivo models including non-human primates (NHP). This procedure has shown promise for clinical and basic science applications, yet the safety and potential neurological effects of long term application in NHP requires further investigation under parameters shown to be efficacious in that species (500kHz, 200–400 kPa, 4–5μm MB, 2 minute sonication). In this study, we repeatedly opened the BBB in the caudate and putamen regions of the basal ganglia of 4 NHP using FUS with systemically-administered MB over 4–20 months. We assessed the safety of the FUS with MB procedure using MRI to detect edema or hemorrhaging in the brain. Contrast enhanced T1-weighted MRI sequences showed a 98% success rate for openings in the targeted regions. T2-weighted and SWI sequences indicated a lack edema in the majority of the cases. We investigated potential neurological effects of the FUS with MB procedure through quantitative cognitive testing of’ visual, cognitive, motivational, and motor function using a random dot motion task with reward magnitude bias presented on a touchpanel display. Reaction times during the task significantly increased on the day of the FUS with MB procedure. This increase returned to baseline within 4–5 days after the procedure. Visual motion discrimination thresholds were unaffected. Our results indicate FUS with MB can be a safe method for repeated opening of the BBB at the basal ganglia in NHP for up to 20 months without any long-term negative physiological or neurological effects with the parameters used.


Journal of Biomechanics | 2012

The mechanics of the primary cilium: An intricate structure with complex function

David A. Hoey; Matthew Downs; Christopher R. Jacobs

The primary cilium is a non-motile singular cellular structure that extends from the surface of nearly every cell in the body. The cilium has been shown to play numerous roles in maintaining tissue homeostasis, through regulating signaling pathways and sensing both biophysical and biochemical changes in the extracellular environment. The structural performance of the cilium is paramount to its function as defective cilia have been linked to numerous pathologies. In particular, the cilium has demonstrated a mechanosensory role in tissues such as the kidney, liver, endothelium and bone, where cilium deflection under mechanical loading triggers a cellular response. Understanding of how cilium structure and subsequent mechanical behavior contributes to the roles that cilium plays in regulating cellular behavior is a compelling question, yet is a relatively untouched research area. Recent advances in biophysical measurements have demonstrated the cilium to be a structurally intricate organelle containing an array of load bearing proteins. Furthermore advances in modeling of this organelle have revealed the importance of these proteins at regulating the ciliums mechanosensitivity. Remarkably, the cilium is capable of adapting its mechanical state, altering its length and possibly its bending resistance, to regulate its mechanosensitivity demonstrating the importance of cilium mechanics in cellular responses. In this review, we introduce the cilium as a mechanosensor; discuss the advances in the mechanical modeling of cilia; explore the structural features of the cilium, which contribute to its mechanics and finish with possible mechanisms in which alteration in structure may affect ciliary mechanics, consequently affecting ciliary based mechanosensing.


PLOS ONE | 2014

Real-time, transcranial monitoring of safe blood-brain barrier opening in non-human primates.

Fabrice Marquet; Tobias Teichert; Shih-Ying Wu; Yao-Sheng Tung; Matthew Downs; Shutao Wang; Cherry C. Chen; Vincent P. Ferrera; Elisa E. Konofagou

The delivery of drugs to specific neural targets faces two fundamental problems: most drugs do not cross the blood-brain barrier and those that do spread to all parts of the brain. To date there exists only one non-invasive methodology with the potential to solve these problems: selective blood-brain barrier disruption using micro-bubble enhanced focused ultrasound. We have recently developed a single-element 500 kHz spherical transducer ultrasound setup for use in the nonhuman primate. Here, we tested the accuracy of the system by targeting the caudate nucleus of the basal ganglia in two macaque monkeys. Our results show that average in-plane error of the system is on the order of 2 mm and targeting error in depth, i.e., along the ultrasound path, is even smaller averaging 1.2 mm. We have also developed a real-time treatment monitoring based on backscattered emissions spectral analyses. This technique helped us determining a safe and reliable acoustic parameters window for BBB opening.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2014

Transcranial cavitation detection in primates during blood-brain barrier opening-a performance assessment study

Shih-Ying Wu; Yao-Sheng Tung; Fabrice Marquet; Matthew Downs; Carlos Sierra Sanchez; Cherry Chen Chen; Vincent P. Ferrera; Elisa E. Konofagou

Focused ultrasound (FUS) has been shown promise in treating the brain locally and noninvasively. Transcranial passive cavitation detection (PCD) provides methodology for monitoring the treatment in real time, but the skull effects remain a major challenge for its translation to the clinic. In this study, we investigated the sensitivity, reliability, and limitations of PCD through primate (macaque and human) skulls in vitro. The results were further correlated with the in vivo macaque studies including the transcranial PCD calibration and real-time monitoring of blood-brain barrier (BBB) opening, with magnetic resonance imaging assessing the opening and safety. The stable cavitation doses using harmonics (SCDh) and ultraharmonics (SCDu), the inertial cavitation dose (ICD), and the cavitation SNR were quantified based on the PCD signals. Results showed that through the macaque skull, the pressure threshold for detecting the SCDh remained the same as without the skull in place, whereas it increased for the SCDu and ICD; through the human skull, it increased for all cavitation doses. The transcranial PCD was found to be reliable both in vitro and in vivo when the transcranial cavitation SNR exceeded the 1-dB detection limit through the in vitro macaque (attenuation: 4.92 dB/mm) and human (attenuation: 7.33 dB/ mm) skull. In addition, using long pulses enabled reliable PCD monitoring and facilitate BBB opening at low pressures. The in vivo results showed that the SCDh became detectable at pressures as low as 100 kPa; the ICD became detectable at 250 kPa, although it could occur at lower pressures; and the SCDu became detectable at 700 kPa and was less reliable at lower pressures. Real-time monitoring of PCD was further implemented during BBB opening, with successful and safe opening achieved at 250 to 600 kPa in both the thalamus and the putamen. In conclusion, this study shows that transcranial PCD in macaques in vitro and in vivo, and in humans in vitro, is reliable by improving the cavitation SNR beyond the 1-dB detection limit.


Biophysical Journal | 2012

Dynamics of the Primary Cilium in Shear Flow

Yuan-Nan Young; Matthew Downs; Christopher R. Jacobs

In this work, the equilibrium shape and dynamics of a primary cilium under flow are investigated by using both theoretical modeling and experiment. The cilium is modeled as an elastic beam that may undergo large deflection due to the hydrodynamic load. Equilibrium results show that the anchoring effects of the basal body on the cilium axoneme behave as a nonlinear rotational spring. Details of the rotational spring are elucidated by coupling the elastic beam with an elastic shell. We further study the dynamics of cilium under shear flow with the cilium base angle determined from the nonlinear rotational spring, and obtain good agreement in cilium bending and relaxing dynamics when comparing between modeling and experimental results. These results potentially shed light on the physics underlying the mechanosensitive ion channel transport through the ciliary membrane.


Scientific Reports | 2015

Blood-Brain Barrier Opening in Behaving Non-Human Primates via Focused Ultrasound with Systemically Administered Microbubbles

Matthew Downs; Amanda Buch; Maria Eleni Karakatsani; Elisa E. Konofagou; Vincent P. Ferrera

Over the past fifteen years, focused ultrasound coupled with intravenously administered microbubbles (FUS) has been proven an effective, non-invasive technique to open the blood-brain barrier (BBB) in vivo. Here we show that FUS can safely and effectively open the BBB at the basal ganglia and thalamus in alert non-human primates (NHP) while they perform a behavioral task. The BBB was successfully opened in 89% of cases at the targeted brain regions of alert NHP with an average volume of opening 28% larger than prior anesthetized FUS procedures. Safety (lack of edema or microhemorrhage) of FUS was also improved during alert compared to anesthetized procedures. No physiological effects (change in heart rate, motor evoked potentials) were observed during any of the procedures. Furthermore, the application of FUS did not disrupt reaching behavior, but in fact improved performance by decreasing reaction times by 23 ms, and significantly decreasing touch error by 0.76 mm on average.


Computer Methods in Biomechanics and Biomedical Engineering | 2014

An experimental and computational analysis of primary cilia deflection under fluid flow.

Matthew Downs; An M. Nguyen; Florian A. Herzog; David A. Hoey; Christopher R. Jacobs

In this study we have developed a novel model of the deflection of primary cilia experiencing fluid flow accounting for phenomena not previously considered. Specifically, we developed a large rotation formulation that accounts for rotation at the base of the cilium, the initial shape of the cilium and fluid drag at high deflection angles. We utilised this model to analyse full 3D data-sets of primary cilia deflecting under fluid flow acquired with high-speed confocal microscopy. We found a wide variety of previously unreported bending shapes and behaviours. We also analysed post-flow relaxation patterns. Results from our combined experimental and theoretical approach suggest that the average flexural rigidity of primary cilia might be higher than previously reported (Schwartz et al. 1997, Am J Physiol. 272(1 Pt 2):F132–F138). In addition our findings indicate that the mechanics of primary cilia are richly varied and mechanisms may exist to alter their mechanical behaviour.


Soft Matter | 2011

Microtubule nanospool formation by active self-assembly is not initiated by thermal activation

Isaac Luria; Jasmine D. Crenshaw; Matthew Downs; Ashutosh Agarwal; Shruti Seshadri; John Gonzales; Ofer Idan; Jovan Kamcev; Parag Katira; Shivendra Pandey; Takahiro Nitta; Simon R. Phillpot; Henry Hess

Biotinylated microtubules partially coated with streptavidin and gliding on a surface coated with kinesin motors can cross-link with each other and assemble into nanospools with a diameter of a few micrometres. The size distribution of these nanospools is determined, and it is shown with simulations of microtubule gliding that these spools are too small to be formed by thermally activated turns in the gliding direction (a Brownian ratchet mechanism). Instead, spool formation is primarily the result of two processes: pinning of gliding microtubules to inactive motors and simultaneous cross-linking of multiple microtubules.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2017

Targeting Effects on the Volume of the Focused Ultrasound-Induced Blood–Brain Barrier Opening in Nonhuman Primates In Vivo

Maria Eleni Karakatsani; Gesthimani Samiotaki; Matthew Downs; Vincent P. Ferrera; Elisa E. Konofagou

Drug delivery to subcortical regions is susceptible to the blood–brain barrier (BBB) impeding the molecular exchange between the blood stream and the brain parenchyma. Focused ultrasound (FUS) coupled with the administration of microbubbles has been proved to open the BBB locally, transiently, and noninvasively both in rodents and in nonhuman-primates (NHPs). The development of this disruption technique independent of MRI monitoring is of primordial importance yet restrained to the targeting optimization. This paper establishes the linear relationship of the incidence angle with the volume of BBB opening (


Frontiers in Neuroscience | 2017

Toward a Cognitive Neural Prosthesis Using Focused Ultrasound

Matthew Downs; Tobias Teichert; Amanda Buch; Maria Eleni Karakatsani; Carlos Sierra; Shangshang Chen; Elisa E. Konofagou; Vincent P. Ferrera

V_{\mathrm{BBB}}

Collaboration


Dive into the Matthew Downs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge