Matthew E. Sanborn
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew E. Sanborn.
Science | 2013
Olga P. Popova; Peter Jenniskens; Vacheslav Emel’yanenko; Anna P. Kartashova; Eugeny Biryukov; Sergey A. Khaibrakhmanov; V. V. Shuvalov; Yurij Rybnov; Alexandr Dudorov; V. I. Grokhovsky; Dmitry D. Badyukov; Qing-Zhu Yin; Peter S. Gural; Jim Albers; Mikael Granvik; L. G. Evers; Jacob Kuiper; Vladimir Kharlamov; Andrey Solovyov; Yuri S. Rusakov; Stanislav Korotkiy; Ilya Serdyuk; Alexander V. Korochantsev; Michail Yu. Larionov; Dmitry Glazachev; Alexander E. Mayer; Galen R. Gisler; Sergei V. Gladkovsky; Josh Wimpenny; Matthew E. Sanborn
Deep Impact? On 15 February 2013, the Russian district of Chelyabinsk, with a population of more than 1 million, suffered the impact and atmospheric explosion of a 20-meter-wide asteroid—the largest impact on Earth by an asteroid since 1908. Popova et al. (p. 1069, published online 7 November; see the Perspective by Chapman) provide a comprehensive description of this event and of the body that caused it, including detailed information on the asteroid orbit and atmospheric trajectory, damage assessment, and meteorite recovery and characterization. A detailed study of a recent asteroid impact provides an opportunity to calibrate the damage caused by these rare events. [Also see Perspective by Chapman] The asteroid impact near the Russian city of Chelyabinsk on 15 February 2013 was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding one million. Because it occurred in an era with modern consumer electronics, field sensors, and laboratory techniques, unprecedented measurements were made of the impact event and the meteoroid that caused it. Here, we document the account of what happened, as understood now, using comprehensive data obtained from astronomy, planetary science, geophysics, meteorology, meteoritics, and cosmochemistry and from social science surveys. A good understanding of the Chelyabinsk incident provides an opportunity to calibrate the event, with implications for the study of near-Earth objects and developing hazard mitigation strategies for planetary protection.
Water Resources Research | 2016
Katherine M. Ransom; Mark N. Grote; Amanda Deinhart; Gary R. Eppich; Carol Kendall; Matthew E. Sanborn; A. Kate Souders; Joshua Wimpenny; Qing-Zhu Yin; Megan Young; Thomas Harter
Groundwater quality is a concern in alluvial aquifers that underlie agricultural areas, such as in the San Joaquin Valley of California. Shallow domestic wells (less than 150 m deep) in agricultural areas are often contaminated by nitrate. Agricultural and rural nitrate sources include dairy manure, synthetic fertilizers, and septic waste. Knowledge of the relative proportion that each of these sources contributes to nitrate concentration in individual wells can aid future regulatory and land management decisions. We show that nitrogen and oxygen isotopes of nitrate, boron isotopes, and iodine concentrations are a useful, novel combination of groundwater tracers to differentiate between manure, fertilizers, septic waste, and natural sources of nitrate. Furthermore, in this work, we develop a new Bayesian mixing model in which these isotopic and elemental tracers were used to estimate the probability distribution of the fractional contributions of manure, fertilizers, septic waste, and natural sources to the nitrate concentration found in an individual well. The approach was applied to 56 nitrate-impacted private domestic wells located in the San Joaquin Valley. Model analysis found that some domestic wells were clearly dominated by the manure source and suggests evidence for majority contributions from either the septic or fertilizer source for other wells. But, predictions of fractional contributions for septic and fertilizer sources were often of similar magnitude, perhaps because modeled uncertainty about the fraction of each was large. For validation of the Bayesian model, fractional estimates were compared to surrounding land use and estimated source contributions were broadly consistent with nearby land use types.
Geochimica et Cosmochimica Acta | 2018
Yuki Hibiya; Gregory J. Archer; Ryoji Tanaka; Matthew E. Sanborn; Yuya Sato; Tsuyoshi Iizuka; Kazuhito Ozawa; Richard J. Walker; Akira Yamaguchi; Qing-Zhu Yin; Tomoki Nakamura; Anthony J. Irving
Northwest Africa (NWA) 6704 is a unique achondrite characterized by a near-chondritic major element composition with a remarkably intact igneous texture. To investigate the origin of this unique achondrite, we have conducted a combined petrologic, chemical, and 187Re-187Os, O, and Ti isotopic study. The meteorite consists of orthopyroxene megacrysts (En55-57Wo3-4Fs40-42; Fe/Mn = 1.4) up to 1.7 cm in length with finer interstices of olivine (Fa50-53; Fe/Mn = 1.1-2.1), chromite (Cr# ~ 0.94), awaruite, sulfides, plagioclase (Ab92An5Or3) and merrillite. The results of morphology, lattice orientation analysis, and mineral chemistry indicate that orthopyroxene megacrysts were originally hollow dendrites that most likely crystallized under high super-saturation and super-cooling conditions (1-102 °C/h), whereas the other phases crystallized between branches of the dendrites in the order of awaruite, chromite → olivine → merrillite → plagioclase. In spite of the inferred high supersaturation, the remarkably large size of orthopyroxene can be explained as a result of crystallization from a melt containing a limited number of nuclei that are preserved as orthopyroxene megacryst cores having high Mg# or including vermicular olivine. The Re-Os isotope data for bulk and metal fractions yield an isochron age of 4576 ± 250 Ma, consistent with only limited open system behavior of highly siderophile elements (HSE) since formation. The bulk chemical composition is characterized by broadly chondritic absolute abundances and only weakly fractionated chondrite-normalized patterns for HSE and rare earth elements (REE), together with substantial depletion of highly volatile elements relative to chondrites. The HSE and REE characteristics indicate that the parental melt and its protolith had not undergone significant segregation of metals, sulfides, or silicate minerals. These combined results suggest that a chondritic precursor to NWA 6704 was heated well above its liquidus temperature so that highly volatile elements were lost and the generated melt initially contained few nuclei of relict orthopyroxene, but the melting and subsequent crystallization took place on a timescale too short to allow magmatic differentiation. Such rapid melting and crystallization might occur as a result of impact on an undifferentiated asteroid. The O-Ti isotope systematics (Δ17O = -1.052 ± 0.004, 2 SD; ε50Ti = 2.28 ± 0.23, 2 SD) indicate that the NWA 6704 parent body sampled the same isotopic reservoirs in the solar nebula as the carbonaceous chondrite parent bodies. This is consistent with carbonaceous chondrite-like refractory element abundances and oxygen fugacity (FMQ = -2.6) in NWA 6704. Yet, the Si/Mg ratio of NWA 6704 is remarkably higher than those of carbonaceous chondrites, suggesting significant nebular fractionation of forsterite in its provenance.
Journal of Physical Chemistry B | 2007
Matthew E. Sanborn; Brian K. Connolly; Kaushik Gurunathan; Marcia Levitus
Geochimica et Cosmochimica Acta | 2010
Tomohiro Usui; Matthew E. Sanborn; Meenakshi Wadhwa; Harry Y. McSween
Meteoritics & Planetary Science | 2014
Peter Jenniskens; Alan E. Rubin; Qing-Zhu Yin; Derek W. G. Sears; Scott A. Sandford; Michael E. Zolensky; Alexander N. Krot; Leigh Blair; Darci J. Kane; Jason Utas; Robert S. Verish; Jon M. Friedrich; Josh Wimpenny; Gary R. Eppich; Karen Ziegler; Kenneth L. Verosub; Douglas J. Rowland; Jim Albers; Peter S. Gural; Bryant Grigsby; Marc Fries; Robert Matson; M. J. S. Johnston; Elizabeth A. Silber; Peter Brown; Akane Yamakawa; Matthew E. Sanborn; M. Laubenstein; Kees C. Welten; Kunihiko Nishiizumi
Meteoritics & Planetary Science | 2015
J. Brian Balta; Matthew E. Sanborn; Arya Udry; Meenakshi Wadhwa; Harry Y. McSween
Meteoritics & Planetary Science | 2013
J. Brian Balta; Matthew E. Sanborn; Harry Y. McSween; Meenakshi Wadhwa
Geochimica et Cosmochimica Acta | 2015
Matthew E. Sanborn; Richard W. Carlson; Meenakshi Wadhwa
Geochimica et Cosmochimica Acta | 2016
Piers Koefoed; Yuri Amelin; Qing-Zhu Yin; Josh Wimpenny; Matthew E. Sanborn; Tsuyoshi Iizuka; Anthony J. Irving