Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew E. Thornton is active.

Publication


Featured researches published by Matthew E. Thornton.


Stem cell reports | 2014

Single-Cell Gene Expression Profiles Define Self-Renewing, Pluripotent, and Lineage Primed States of Human Pluripotent Stem Cells

Shelley R. Hough; Matthew E. Thornton; Elizabeth Mason; Jessica C. Mar; Christine A. Wells; Martin F. Pera

Summary Pluripotent stem cells display significant heterogeneity in gene expression, but whether this diversity is an inherent feature of the pluripotent state remains unknown. Single-cell gene expression analysis in cell subsets defined by surface antigen expression revealed that human embryonic stem cell cultures exist as a continuum of cell states, even under defined conditions that drive self-renewal. The majority of the population expressed canonical pluripotency transcription factors and could differentiate into derivatives of all three germ layers. A minority subpopulation of cells displayed high self-renewal capacity, consistently high transcripts for all pluripotency-related genes studied, and no lineage priming. This subpopulation was characterized by its expression of a particular set of intercellular signaling molecules whose genes shared common regulatory features. Our data support a model of an inherently metastable self-renewing population that gives rise to a continuum of intermediate pluripotent states, which ultimately become primed for lineage specification.


Development | 2015

Evidence for the involvement of Fibroblast Growth Factor 10 in lipofibroblast formation during embryonic lung development

Denise Al Alam; Elie El Agha; Reiko Sakurai; Vahid Kheirollahi; Alena Moiseenko; Soula Danopoulos; Amit Shrestha; Carole Schmoldt; Jennifer Quantius; Susanne Herold; Cho-Ming Chao; Caterina Tiozzo; Stijn De Langhe; Maksim V. Plikus; Matthew E. Thornton; Brendan H. Grubbs; Parviz Minoo; Virender K. Rehan; Saverio Bellusci

Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. Summary: During lung development in mice, Fgf10 signaling plays an essential role in the formation of lipofibroblasts, which are required for the growth and survival of adult lung epithelial stem cells.


Journal of The American Society of Nephrology | 2018

Conserved and Divergent Features of Human and Mouse Kidney Organogenesis

Nils O. Lindström; Jill A. McMahon; Jinjin Guo; Tracy Tran; Qiuyu Guo; Elisabeth Rutledge; Riana K. Parvez; Gohar Saribekyan; Robert Schuler; Christopher Liao; Albert D. Kim; Ahmed Abdelhalim; Seth W. Ruffins; Matthew E. Thornton; Laurence Basking; Brendan H. Grubbs; Carl Kesselman; Andrew P. McMahon

Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database (www.gudmap.org) together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species.


Journal of The American Society of Nephrology | 2018

Conserved and Divergent Molecular and Anatomic Features of Human and Mouse Nephron Patterning

Nils O. Lindström; Tracy Tran; Jinjin Guo; Elisabeth Rutledge; Riana K. Parvez; Matthew E. Thornton; Brendan H. Grubbs; Jill A. McMahon; Andrew P. McMahon

The nephron is the functional unit of the kidney, but the mechanism of nephron formation during human development is unclear. We conducted a detailed analysis of nephron development in humans and mice by immunolabeling, and we compared human and mouse nephron patterning to describe conserved and divergent features. We created protein localization maps that highlight the emerging patterns along the proximal-distal axis of the developing nephron and benchmark expectations for localization of functionally important transcription factors, which revealed unanticipated cellular diversity. Moreover, we identified a novel nephron subdomain marked by Wnt4 expression that we fate-mapped to the proximal mature nephron. Significant conservation was observed between human and mouse patterning. We also determined the time at which markers for mature nephron cell types first emerge-critical data for the renal organoid field. These findings have conceptual implications for the evolutionary processes driving the diversity of mammalian organ systems. Furthermore, these findings provide practical insights beyond those gained with mouse and rat models that will guide in vitro efforts to harness the developmental programs necessary to build human kidney structures.


Journal of The American Society of Nephrology | 2018

Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney

Nils O. Lindström; Jinjin Guo; Albert D. Kim; Tracy Tran; Qiuyu Guo; Guilherme De Sena Brandine; Andrew Ransick; Riana K. Parvez; Matthew E. Thornton; Laurence Basking; Brendan H. Grubbs; Jill A. McMahon; Andrew D. Smith; Andrew P. McMahon

Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2+ nephron progenitor cells (NPCs) and Foxd1+ interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1, were readily detected within SIX2+ NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2+ NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2, are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs.


Scientific Reports | 2017

Zika Virus Infects Intermediate Progenitor Cells and Post-mitotic Committed Neurons in Human Fetal Brain Tissues.

Ming-Yi Lin; Y. Wang; Wan-Lin Wu; Victoria Wolseley; Ming-Ting Tsai; Vladimir Radic; Matthew E. Thornton; Brendan H. Grubbs; Robert H. Chow; I-Chueh Huang

Zika virus (ZIKV) infection is associated with microcephaly in fetuses, but the pathogenesis of ZIKV-related microcephaly is not well understood. Here we show that ZIKV infects the subventricular zone in human fetal brain tissues and that the tissue tropism broadens with the progression of gestation. Our research demonstrates also that intermediate progenitor cells (IPCs) are the main target cells for ZIKV. Post-mitotic committed neurons become susceptible to ZIKV infection as well at later stages of gestation. Furthermore, activation of microglial cells, DNA fragmentation, and apoptosis of infected or uninfected cells could be found in ZIKV-infected brain tissues. Our studies identify IPCs as the main target cells for ZIKV. They also suggest that immune activation after ZIKV infection may play an important role in the pathogenesis of ZIKV-related microcephaly.


Stem Cells Translational Medicine | 2017

Direct Isolation and Characterization of Human Nephron Progenitors

Stefano Da Sacco; Matthew E. Thornton; Astgik Petrosyan; Maria Lavarreda-Pearce; Sargis Sedrakyan; Brendan H. Grubbs; Roger E. De Filippo; Laura Perin

Mature nephrons originate from a small population of uninduced nephrogenic progenitor cells (NPs) within the cap mesenchyme. These cells are characterized by the coexpression of SIX2 and CITED1. Many studies on mouse models as well as on human pluripotent stem cells have advanced our knowledge of NPs, but very little is known about this population in humans, since it is exhausted before birth and strategies for its direct isolation are still limited. Here we report an efficient protocol for direct isolation of human NPs without genetic manipulation or stepwise induction procedures. With the use of RNA‐labeling probes, we isolated SIX2+CITED1+ cells from human fetal kidney for the first time. We confirmed their nephrogenic state by gene profiling and evaluated their nephrogenic capabilities in giving rise to mature renal cells. We also evaluated the ability to culture these cells without complete loss of SIX2 and CITED1 expression over time. In addition to defining the gene profile of human NPs, this in vitro system facilitates studies of human renal development and provides a novel tool for renal regeneration and bioengineering purposes. Stem Cells Translational Medicine 2017;6:419–433


Stem cell reports | 2017

Neural Crest Cell Implantation Restores Enteric Nervous System Function and Alters the Gastrointestinal Transcriptome in Human Tissue-Engineered Small Intestine

Christopher R. Schlieve; Kathryn L. Fowler; Matthew E. Thornton; Sha Huang; Ibrahim Hajjali; Xiaogang Hou; Brendan H. Grubbs; Jason R. Spence; Tracy C. Grikscheit

Summary Acquired or congenital disruption in enteric nervous system (ENS) development or function can lead to significant mechanical dysmotility. ENS restoration through cellular transplantation may provide a cure for enteric neuropathies. We have previously generated human pluripotent stem cell (hPSC)-derived tissue-engineered small intestine (TESI) from human intestinal organoids (HIOs). However, HIO-TESI fails to develop an ENS. The purpose of our study is to restore ENS components derived exclusively from hPSCs in HIO-TESI. hPSC-derived enteric neural crest cell (ENCC) supplementation of HIO-TESI establishes submucosal and myenteric ganglia, repopulates various subclasses of neurons, and restores neuroepithelial connections and neuron-dependent contractility and relaxation in ENCC-HIO-TESI. RNA sequencing identified differentially expressed genes involved in neurogenesis, gliogenesis, gastrointestinal tract development, and differentiated epithelial cell types when ENS elements are restored during in vivo development of HIO-TESI. Our findings validate an effective approach to restoring hPSC-derived ENS components in HIO-TESI and may implicate their potential for the treatment of enteric neuropathies.


Cellular and molecular gastroenterology and hepatology | 2017

Prolonged Absence of Mechanoluminal Stimulation in Human Intestine Alters the Transcriptome and Intestinal Stem Cell Niche

Minna M. Wieck; Christopher R. Schlieve; Matthew E. Thornton; Kathryn L. Fowler; Mubina A. Isani; Christa N. Grant; Ashley E. Hilton; Xiaogang Hou; Brendan H. Grubbs; Mark R. Frey; Tracy C. Grikscheit

Background & Aims For patients with short-bowel syndrome, intestinal adaptation is required to achieve enteral independence. Although adaptation has been studied extensively in animal models, little is known about this process in human intestine. We hypothesized that analysis of matched specimens with and without luminal flow could identify new potential therapeutic pathways. Methods Fifteen paired human ileum samples were collected from children aged 2–20 months during ileostomy-reversal surgery after short-segment intestinal resection and diversion. The segment exposed to enteral feeding was denoted as fed, and the diverted segment was labeled as unfed. Morphometrics and cell differentiation were compared histologically. RNA Sequencing and Gene Ontology Enrichment Analysis identified over-represented and under-represented pathways. Immunofluorescence staining and Western blot evaluated proteins of interest. Paired data were compared with 1-tailed Wilcoxon rank-sum tests with a P value less than .05 considered significant. Results Unfed ileum contained shorter villi, shallower crypts, and fewer Paneth cells. Genes up-regulated by the absence of mechanoluminal stimulation were involved in digestion, metabolism, and transport. Messenger RNA expression of LGR5 was significantly higher in unfed intestine, accompanied by increased levels of phosphorylated signal transducer and activator of transcription 3 protein, and CCND1 and C-MYC messenger RNA. However, decreased proliferation and fewer LGR5+, OLFM4+, and SOX9+ intestinal stem cells (ISCs) were observed in unfed ileum. Conclusions Even with sufficient systemic caloric intake, human ileum responds to the chronic absence of mechanoluminal stimulation by up-regulating brush-border enzymes, transporters, structural genes, and ISC genes LGR5 and ASCL2. These data suggest that unfed intestine is primed to replenish the ISC population upon re-introduction of enteral feeding. Therefore, the elucidation of pathways involved in these processes may provide therapeutic targets for patients with intestinal failure. RNA sequencing data are available at Gene Expression Omnibus series GSE82147.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2018

Human lung branching morphogenesis is orchestrated by the spatio-temporal distribution of ACTA2, SOX2 and SOX9

Soula Danopoulos; Irving Alonso; Matthew E. Thornton; Brendan H. Grubbs; Saverio Bellusci; David Warburton; Denise Al Alam

Lung morphogenesis relies on a number of important processes, including proximal-distal patterning, cell proliferation, migration and differentiation, as well as epithelial-mesenchymal interactions. In mouse lung development, SOX2+ cells are localized in the proximal epithelium, whereas SOX9+ cells are present in the distal epithelium. We show that, in human lung, expression of these transcription factors differs, in that during the pseudoglandular stage distal epithelial progenitors at the tips coexpress SOX2 and SOX9. This double-positive population was no longer present by the canalicular stages of development. As in mouse, the human proximal epithelial progenitors express solely SOX2 and are surrounded by smooth muscle cells (SMCs) both in the proximal airways and at the epithelial clefts. Upon Ras-related C3 botulinum toxin substrate 1 inhibition, we noted decreased branching, as well as increased SMC differentiation, attenuated peristalsis, and a reduction in the distal double-positive SOX2/SOX9 progenitor cell population. Thus, the presence of SOX2/SOX9 double-positive progenitor cells in the distal epithelium during the pseudoglandular stage of human lung development appears to be critical to proximal-distal patterning and lung branching. Moreover, SMCs promote a SOX2 proximal phenotype and seem to suppress the SOX9+ population.

Collaboration


Dive into the Matthew E. Thornton's collaboration.

Top Co-Authors

Avatar

Brendan H. Grubbs

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Tracy C. Grikscheit

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Andrew P. McMahon

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Denise Al Alam

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinjin Guo

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Nils O. Lindström

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Riana K. Parvez

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Soula Danopoulos

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Tracy Tran

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge