Matthew J. Gorman
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew J. Gorman.
Nature | 2016
Jennifer Govero; Prabagaran Esakky; Suzanne Scheaffer; Estefania Fernandez; Andrea Drury; Derek J. Platt; Matthew J. Gorman; Justin M. Richner; Elizabeth A. Caine; Vanessa Salazar; Kelle H. Moley; Michael S. Diamond
Infection of pregnant women with Zika virus (ZIKV) can cause congenital malformations including microcephaly, which has focused global attention on this emerging pathogen. In addition to transmission by mosquitoes, ZIKV can be detected in the seminal fluid of affected males for extended periods of time and transmitted sexually. Here, using a mouse-adapted African ZIKV strain (Dakar 41519), we evaluated the consequences of infection in the male reproductive tract of mice. We observed persistence of ZIKV, but not the closely related dengue virus (DENV), in the testis and epididymis of male mice, and this was associated with tissue injury that caused diminished testosterone and inhibin B levels and oligospermia. ZIKV preferentially infected spermatogonia, primary spermatocytes and Sertoli cells in the testis, resulting in cell death and destruction of the seminiferous tubules. Less damage was caused by a contemporary Asian ZIKV strain (H/PF/2013), in part because this virus replicates less efficiently in mice. The extent to which these observations in mice translate to humans remains unclear, but longitudinal studies of sperm function and viability in ZIKV-infected humans seem warranted.
Nature | 2016
Rong Zhang; Jonathan J. Miner; Matthew J. Gorman; Keiko Rausch; Holly Ramage; James P. White; Adam Zuiani; Ping Zhang; Estefania Fernandez; Qiang Zhang; Kimberly A. Dowd; Theodore C. Pierson; Sara Cherry; Michael S. Diamond
Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern.
Nature Medicine | 2015
Jonathan J. Miner; Brian P. Daniels; Bimmi Shrestha; Jose Luiz Proenca-Modena; Erin D. Lew; Helen M. Lazear; Matthew J. Gorman; Greg Lemke; Robyn S. Klein; Michael S. Diamond
The TAM receptors Tyro3, Axl and Mertk are receptor tyrosine kinases that dampen host innate immune responses following engagement with their ligands Gas6 and Protein S, which recognize phosphatidylserine on apoptotic cells. In a form of apoptotic mimicry, many enveloped viruses display phosphatidylserine on the outer leaflet of their membranes, enabling TAM receptor activation and downregulation of antiviral responses. Accordingly, we hypothesized that a deficiency of TAM receptors would enhance antiviral responses and protect against viral infection. Unexpectedly, mice lacking Mertk and/or Axl, but not Tyro3, exhibited greater vulnerability to infection with neuroinvasive West Nile and La Crosse encephalitis viruses. This phenotype was associated with increased blood-brain barrier permeability, which enhanced virus entry into and infection of the brain. Activation of Mertk synergized with interferon-β to tighten cell junctions and prevent virus transit across brain microvascular endothelial cells. Because TAM receptors restrict pathogenesis of neuroinvasive viruses, these findings have implications for TAM antagonists that are currently in clinical development.
Journal of Virology | 2016
Matthew J. Gorman; Subhajit Poddar; Michael Farzan; Michael S. Diamond
ABSTRACT The interferon-induced transmembrane protein (IFITM) family of proteins inhibit infection of several different enveloped viruses in cell culture by virtue of their ability to restrict entry and fusion from late endosomes. As few studies have evaluated the importance of Ifitm3 in vivo in restricting viral pathogenesis, we investigated its significance as an antiviral gene against West Nile virus (WNV), an encephalitic flavivirus, in cells and mice. Ifitm3 −/− mice were more vulnerable to lethal WNV infection, and this was associated with greater virus accumulation in peripheral organs and central nervous system tissues. As no difference in viral burden in the brain or spinal cord was observed after direct intracranial inoculation, Ifitm3 likely functions as an antiviral protein in nonneuronal cells. Consistent with this, Ifitm3 −/− fibroblasts but not dendritic cells resulted in higher yields of WNV in multistep growth analyses. Moreover, transcomplementation experiments showed that Ifitm3 inhibited WNV infection independently of Ifitm1, Ifitm2, Ifitm5, and Ifitm6. Beyond a direct effect on viral infection in cells, analysis of the immune response in WNV-infected Ifitm3 −/− mice showed decreases in the total number of B cells, CD4+ T cells, and antigen-specific CD8+ T cells. Finally, bone marrow chimera experiments demonstrated that Ifitm3 functioned in both radioresistant and radiosensitive cells, as higher levels of WNV were observed in the brain only when Ifitm3 was absent from both compartments. Our analyses suggest that Ifitm3 restricts WNV pathogenesis likely through multiple mechanisms, including the direct control of infection in subsets of cells. IMPORTANCE As part of the mammalian host response to viral infections, hundreds of interferon-stimulated genes (ISGs) are induced. The inhibitory activity of individual ISGs varies depending on the specific cell type and viral pathogen. Among ISGs, the genes encoding interferon-induced transmembrane protein (IFITM) have been reported to inhibit multiple families of viruses in cell culture. However, few reports have evaluated the impact of IFITM genes on viral pathogenesis in vivo. In this study, we characterized the antiviral activity of Ifitm3 against West Nile virus (WNV), an encephalitic flavivirus, using mice with a targeted gene deletion of Ifitm3. Based on extensive virological and immunological analyses, we determined that Ifitm3 protects mice from WNV-induced mortality by restricting virus accumulation in peripheral organs and, subsequently, in central nervous system tissues. Our data suggest that Ifitm3 restricts WNV pathogenesis by multiple mechanisms and functions in part by controlling infection in different cell types.
Journal of Experimental Medicine | 2017
Zhe Zhu; Matthew J. Gorman; Lisa D. McKenzie; Jiani N. Chai; Christopher G. Hubert; Briana Prager; Estefania Fernandez; Justin M. Richner; Rong Zhang; Chao Shan; Eric Tycksen; Xiuxing Wang; Pei Yong Shi; Michael S. Diamond; Jeremy N. Rich; Milan G. Chheda
Glioblastoma is a highly lethal brain cancer that frequently recurs in proximity to the original resection cavity. We explored the use of oncolytic virus therapy against glioblastoma with Zika virus (ZIKV), a flavivirus that induces cell death and differentiation of neural precursor cells in the developing fetus. ZIKV preferentially infected and killed glioblastoma stem cells (GSCs) relative to differentiated tumor progeny or normal neuronal cells. The effects against GSCs were not a general property of neurotropic flaviviruses, as West Nile virus indiscriminately killed both tumor and normal neural cells. ZIKV potently depleted patient-derived GSCs grown in culture and in organoids. Moreover, mice with glioblastoma survived substantially longer and at greater rates when the tumor was inoculated with a mouse-adapted strain of ZIKV. Our results suggest that ZIKV is an oncolytic virus that can preferentially target GSCs; thus, genetically modified strains that further optimize safety could have therapeutic efficacy for adult glioblastoma patients.
Journal of Virology | 2016
Subhajit Poddar; Jennifer L. Hyde; Matthew J. Gorman; Michael Farzan; Michael S. Diamond
ABSTRACT Host cells respond to viral infections by producing type I interferon (IFN), which induces the expression of hundreds of interferon-stimulated genes (ISGs). Although ISGs mediate a protective state against many pathogens, the antiviral functions of the majority of these genes have not been identified. IFITM3 is a small transmembrane ISG that restricts a broad range of viruses, including orthomyxoviruses, flaviviruses, filoviruses, and coronaviruses. Here, we show that alphavirus infection is increased in Ifitm3 −/− and Ifitm locus deletion (Ifitm-del) fibroblasts and, reciprocally, reduced in fibroblasts transcomplemented with Ifitm3. Mechanistic studies showed that Ifitm3 did not affect viral binding or entry but inhibited pH-dependent fusion. In a murine model of chikungunya virus arthritis, Ifitm3 −/− mice sustained greater joint swelling in the ipsilateral ankle at days 3 and 7 postinfection, and this correlated with higher levels of proinflammatory cytokines and viral burden. Flow cytometric analysis suggested that Ifitm3 −/− macrophages from the spleen were infected at greater levels than observed in wild-type (WT) mice, results that were supported by experiments with Ifitm3 −/− bone marrow-derived macrophages. Ifitm3 −/− mice also were more susceptible than WT mice to lethal alphavirus infection with Venezuelan equine encephalitis virus, and this was associated with greater viral burden in multiple organs. Collectively, our data define an antiviral role for Ifitm3 in restricting infection of multiple alphaviruses. IMPORTANCE The interferon-induced transmembrane protein 3 (IFITM3) inhibits infection of multiple families of viruses in cell culture. Compared to other viruses, much less is known about the antiviral effect of IFITM3 on alphaviruses. In this study, we characterized the antiviral activity of mouse Ifitm3 against arthritogenic and encephalitic alphaviruses using cells and animals with a targeted gene deletion of Ifitm3 as well as deficient cells transcomplemented with Ifitm3. Based on extensive virological analysis, we demonstrate greater levels of alphavirus infection and disease pathogenesis when Ifitm3 expression is absent. Our data establish an inhibitory role for Ifitm3 in controlling infection of alphaviruses.
PLOS Pathogens | 2014
Amelia K. Pinto; Hilario J. Ramos; Xiaobo Wu; Shilpa Aggarwal; Bimmi Shrestha; Matthew J. Gorman; Kristin Y. Kim; Mehul S. Suthar; John P. Atkinson; Michael Gale; Michael S. Diamond
The type I interferon (IFN) signaling response limits infection of many RNA and DNA viruses. To define key cell types that require type I IFN signaling to orchestrate immunity against West Nile virus (WNV), we infected mice with conditional deletions of the type I IFN receptor (IFNAR) gene. Deletion of the Ifnar gene in subsets of myeloid cells resulted in uncontrolled WNV replication, vasoactive cytokine production, sepsis, organ damage, and death that were remarkably similar to infection of Ifnar −/− mice completely lacking type I IFN signaling. In Mavs−/−×Ifnar−/− myeloid cells and mice lacking both Ifnar and the RIG-I-like receptor adaptor gene Mavs, cytokine production was muted despite high levels of WNV infection. Thus, in myeloid cells, viral infection triggers signaling through MAVS to induce proinflammatory cytokines that can result in sepsis and organ damage. Viral pathogenesis was caused in part by massive complement activation, as liver damage was minimized in animals lacking complement components C3 or factor B or treated with neutralizing anti-C5 antibodies. Disease in Ifnar −/− and CD11c Cre+ Ifnar f/f mice also was facilitated by the proinflammatory cytokine TNF-α, as blocking antibodies diminished complement activation and prolonged survival without altering viral burden. Collectively, our findings establish the dominant role of type I IFN signaling in myeloid cells in restricting virus infection and controlling pathological inflammation and tissue injury.
PLOS ONE | 2013
Neuza Teixeira; Sriram Varahan; Matthew J. Gorman; Kelli L. Palmer; Anna Zaidman-Rémy; Ryoji Yokohata; Jiro Nakayama; Lynn E. Hancock; Antonio Jacinto; Michael S. Gilmore; Maria de Fátima Silva Lopes
Enterococcus faecalis V583 is a vancomycin-resistant clinical isolate which belongs to the hospital-adapted clade, CC2. This strain harbours several factors that have been associated with virulence, including the fsr quorum-sensing regulatory system that is known to control the expression of GelE and SprE proteases. To discriminate between genes directly regulated by Fsr, and those indirectly regulated as the result of protease expression or activity, we compared gene expression in isogenic mutants of V583 variously defective in either Fsr quorum sensing or protease expression. Quorum sensing was artificially induced by addition of the quorum signal, GBAP, exogenously in a controlled manner. The Fsr regulon was found to be restricted to five genes, gelE, sprE, ef1097, ef1351 and ef1352. Twelve additional genes were found to be dependent on the presence of GBAP-induced proteases. Induction of GelE and SprE by GBAP via Fsr resulted in accumulation of mRNA encoding lrgAB, and this induction was found to be lytRS dependent. Drosophila infection was used to discern varying levels of toxicity stemming from mutations in the fsr quorum regulatory system and the genes that it regulates, highlighting the contribution of LrgAB and bacteriocin EF1097 to infection toxicity. A contribution of SprE to infection toxicity was also detected. This work brought to light new players in E. faecalis success as a pathogen and paves the way for future studies on host tolerance mechanisms to infections caused by this important nosocomial pathogen.
Nature Communications | 2017
Jinsheng Wen; Annie Elong Ngono; Jose Angel Regla-Nava; Kenneth Kim; Matthew J. Gorman; Michael S. Diamond; Sujan Shresta
Zika virus (ZIKV) and dengue virus (DENV) are antigenically related flaviviruses that share cross-reactivity in antibody and T cell responses, and co-circulate in increasing numbers of countries. Whether pre-existing DENV immunity can cross-protect or enhance ZIKV infection during sequential infection of the same host is unknown. Here, we show that DENV-immune Ifnar1−/− or wild-type C57BL/6 mice infected with ZIKV have cross-reactive immunity to subsequent ZIKV infection and pathogenesis. Adoptive transfer and cell depletion studies demonstrate that DENV-immune CD8+ T cells predominantly mediate cross-protective responses to ZIKV. In contrast, passive transfer studies suggest that DENV-immune serum does not protect against ZIKV infection. Thus, CD8+ T cell immunity generated during primary DENV infection can confer protection against secondary ZIKV infection in mice. Further optimization of current DENV vaccines for T cell responses might confer cross-protection and prevent antibody-mediated enhancement of ZIKV infection.Dengue virus-specific antibody and CD8+ T cells that cross-react with Zika virus have been described. Here, the authors establish a functionally protective role for cross-reactive dengue virus-specific CD8+ T cells during challenge with Zika virus.
Journal of Pediatric Hematology Oncology | 2002
Kay L. Saving; Peggy Mankin; Matthew J. Gorman
Purpose To examine the hypothesis that reticulated platelets and reticulocytes show elevated adhesion receptor expression compared with mature cells in both adult and neonatal cells. Methods Flow cytometry was used to examine laminin, fibronectin (VLA-6), and thrombospondin (glycoprotein IV [GPIV]) expression in reticulated red cells, reticulated platelets, and older peripherally circulating mature red cells and mature platelets in seven newborn cord blood samples and blood samples from eight adult volunteers. Results The difference in the neonatal reticulated platelet percentage of 9.2 ± 14.8% was not statistically significant from the adult reticulated platelet percentage of 5.0 ± 1.5% in this small population. There was a statistically significant difference between the reticulated cord blood red cell mean of 7.7 ± 1.8% and the adult mean of 3.1 ± 0.43%. Mean expression of VLA-6 was 96% in adult reticulated platelets, 79% in adult mature platelets, 81% in cord reticulated platelets and 65% in cord mature platelets. Mean expression of GPIV was similar, with corresponding values of 90%, 71%, 78%, and 57%. Reticulated red cells in adults averaged 44% VLA-4 and 46% GPIV; cord reticulocytes were 9% and 15%, respectively. Conclusions Reticulated cells newly released from the bone marrow express more adhesive receptors than mature cells in both groups. Cord blood samples showed hypoexpression of both receptor types in red blood cells and platelets.