Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew J. Pezone is active.

Publication


Featured researches published by Matthew J. Pezone.


Anesthesia & Analgesia | 2013

Drug infusion system manifold dead-volume impacts the delivery response time to changes in infused medication doses in vitro and also in vivo in anesthetized swine.

Mark A. Lovich; Matthew G. Wakim; Abraham E. Wei; Michael J. Parker; Mikhail Y. Maslov; Matthew J. Pezone; Hisashi Tsukada; Robert A. Peterfreund

BACKGROUND: IV infusion systems can be configured with manifolds connecting multiple drug infusion lines to transcutaneous catheters. Prior in vitro studies suggest that there may be significant lag times for drug delivery to reflect changes in infusion rates set at the pump, especially with low drug and carrier flows and larger infusion system dead-volumes. Drug manifolds allow multiple infusions to connect to a single catheter port but add dead-volume. We hypothesized that the time course of physiological responses to drug infusion in vivo reflects the impact of dead-volume on drug delivery. METHODS: The kinetic response to starting and stopping epinephrine infusion ([3 mL/h] with constant carrier flow [10 mL/h]) was compared for high- and low-dead-volume manifolds in vitro and in vivo. A manifold consisting of 4 sequential stopcocks with drug entering at the most upstream port was contrasted with a novel design comprising a tube with separate coaxial channels meeting at the downstream connector to the catheter, which virtually eliminates the manifold contribution to the dead-volume. The time to 50% (T50) and 90% (T90) increase or decrease in drug delivery in vitro or contractile response in a swine model in vivo were calculated for initiation and cessation of drug infusion. RESULTS: The time to steady state after initiation and cessation of drug infusion both in vitro and in vivo was much less with the coaxial low-dead-volume manifold than with the high-volume design. Drug delivery after initiation in vitro reached 50% and 90% of steady state in 1.4 ± 0.12 and 2.2 ± 0.42 minutes with the low-dead-volume manifold and in 7.1 ± 0.58 and 9.8 ± 1.6 minutes with the high-dead-volume manifold, respectively. The contractility in vivo reached 50% and 90% of the full response after drug initiation in 4.3 ± 1.3 and 9.9 ± 3.9 minutes with the low-dead-volume manifold and 11 ± 1.2 and 17 ± 2.6 minutes with the high-dead-volume manifold, respectively. Drug delivery in vitro decreased by 50% and 90% after drug cessation in 1.9 ± 0.17 and 3.5 ± 0.61 minutes with the low-dead-volume manifold and 10.0 ± 1.0 and 17.0 ± 2.8 minutes with the high-dead-volume manifold, respectively. The contractility in vivo decreased by 50% and 90% with drug cessation in 4.1 ± 1.1 and 14 ± 5.2 with the low-dead-volume manifold and 12 ± 2.7 and 23 ± 5.6 minutes with the high-dead-volume manifold, respectively. CONCLUSIONS: The architecture of the manifold impacts the in vivo biologic response, and the drug delivery rate, to changes in drug infusion rate set at the pump.


Journal of Biological Chemistry | 2012

Mitochondrial Dysfunction in Skeletal Muscle of Amyloid Precursor Protein-overexpressing Mice

Simona Boncompagni; Charbel Moussa; Ezra Levy; Matthew J. Pezone; Jose R. Lopez; Feliciano Protasi; Alexander Shtifman

Background: Intracellular accumulation of β-amyloid is a key step in pathogenesis of the inclusion body myositis (IBM). Results: Intramyofiber accumulation of β-amyloid in MCK-βAPP mice leads to structural and functional mitochondrial abnormalities. Conclusion: Mitochondrial abnormalities precede IBM-related histological and motor deficits in MCK-βAPP mice. Significance: The diminished mitochondrial function may play a key role during the β-amyloid mediated pathogenesis in IBM. Inclusion body myositis, the most common muscle disorder in the elderly, is partly characterized by abnormal expression of amyloid precursor protein (APP) and intracellular accumulation of its proteolytic fragments collectively known as β-amyloid. The present study examined the effects of β-amyloid accumulation on mitochondrial structure and function of skeletal muscle from transgenic mice (MCK-βAPP) engineered to accumulate intramyofiber β-amyloid. Electron microscopic analysis revealed that a large fraction of myofibers from 2–3-month-old MCK-βAPP mice contained numerous, heterogeneous alterations in mitochondria, and other cellular organelles. [1H-decoupled]13C NMR spectroscopy showed a substantial reduction in TCA cycle activity and indicated a switch from aerobic to anaerobic glucose metabolism in the MCK-βAPP muscle. Isolated muscle fibers from the MCK-βAPP mice also exhibited a reduction in cytoplasmic pH, an increased rate of ROS production, and a partially depolarized plasmalemma. Treatment of MCK-βAPP muscle cells with Ru360, a mitochondrial Ca2+ uniporter antagonist, reversed alterations in the plasmalemmal membrane potential (Vm) and pH. Consistent with altered redox state of the cells, treatment of MCK-βAPP muscle cells with glutathione reversed the effects of β-amyloid accumulation on Ca2+ transient amplitudes. We conclude that structural and functional alterations in mitochondria precede the reported appearance of histopathological and clinical features in the MCK-βAPP mice and may represent key early events in the pathogenesis of inclusion body myositis.


Journal of Controlled Release | 2013

High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: An example with epicardial inotropic drug delivery

Mikhail Y. Maslov; Elazer R. Edelman; Abraham E. Wei; Matthew J. Pezone; Mark A. Lovich

Local drug delivery preferentially loads target tissues with a concentration gradient from the surface or point of release that tapers down to more distant sites. Drug that diffuses down this gradient must be in unbound form, but such drug can only elicit a biologic effect through receptor interactions. Drug excess loads tissues, increasing gradients and driving penetration, but with limited added biological response. We examined the hypothesis that local application reduces dramatically systemic circulating drug levels but leads to significantly higher tissue drug concentration than might be needed with systemic infusion in a rat model of local epicardial inotropic therapy. Epinephrine was infused systemically or released locally to the anterior wall of the heart using a novel polymeric platform that provides steady, sustained release over a range of precise doses. Epinephrine tissue concentration, upregulation of cAMP, and global left ventricular response were measured at equivalent doses and at doses equally effective in raising indices of contractility. The contractile stimulation by epinephrine was linked to drug tissue levels and commensurate cAMP upregulation for IV systemic infusion, but not with local epicardial delivery. Though cAMP was a powerful predictor of contractility with local application, tissue epinephrine levels were high and variable--only a small fraction of the deposited epinephrine was utilized in second messenger signaling and biologic effect. The remainder of deposited drug was likely used in diffusive transport and distribution. Systemic side effects were far more profound with IV infusion which, though it increased contractility, also induced tachycardia and loss of systemic vascular resistance, which were not seen with local application. Local epicardial inotropic delivery illustrates then a paradigm of how target tissues differentially handle and utilize drug compared to systemic infusion.


Anesthesia & Analgesia | 2015

Infusion System Carrier Flow Perturbations and Dead-volume: Large Effects on Drug Delivery In Vitro and Hemodynamic Responses in a Swine Model

Mark A. Lovich; Matthew J. Pezone; Mikhail Y. Maslov; Michael R. Murray; Matthew G. Wakim; Robert A. Peterfreund

BACKGROUND:We have previously shown that, at constant carrier flow, drug infusion systems with large dead-volumes (V) slow the time to steady-state drug delivery in vitro and pharmacodynamic effect in vivo compared to those with smaller V. In this study, we tested whether clinically relevant alterations in carrier flow generate perturbations in drug delivery and pharmacodynamic effect, and how these might be magnified when V is large. METHODS:Drug delivery in vitro or mean arterial blood pressure (MAP) and ventricular contractility (max dP/dt) in a swine model were quantified during an infusion of norepinephrine (fixed rate 3 mL/h) with a crystalloid carrier (10 mL/h). The carrier flow was transiently halted for either 10 minutes or 20 minutes and then restarted. In separate experiments, a second drug infusion (50 mL over 10 minutes) was introduced into the same catheter lumen used by a steady-state norepinephrine infusion. The resulting perturbations in drug delivery and biologic effect were compared between drug infusion systems with large and small V. RESULTS:Halting carrier flow immediately decreased drug delivery in vitro, and MAP and max dP/dt. These returned to steady state before restarting carrier flow with the small, but not the large, V. Resuming carrier flow after 10 minutes resulted in a transient increase in drug delivery in vitro and max dP/dt in vivo, which were of longer duration and greater area under the curve (AUC) for larger V. MAP also increased for longer duration for larger V. Resuming the carrier flow after 20 minutes resulted in greater AUCs for drug delivery, MAP, and max dP/dt for the larger V. Adding a second infusion to a steady-state norepinephrine plus carrier flow initially resulted in a drug bolus in vitro and augmented contractility response in vivo, both greater with a larger V. Steady-state drug delivery resumed before the secondary infusion finished. After the end of the secondary infusion drug delivery, MAP and max dP/dt decreased over minutes. Drug delivery and max dP/dt returned to steady state more quickly with the small V. CONCLUSIONS:Stopping and resuming a carrier flow, or introducing a second medication infusion, impacts drug delivery in vitro and biologic response in vivo. Infusion systems with small dead-volumes minimize these perturbations and dampen the resulting hemodynamic instability. Alterations in carrier flow impact drug delivery, resulting in substantial effects on physiologic responses. Therefore, infusion systems for vasoactive drugs should be configured with small V when possible.


Radiation Research | 2013

Divergent Modification of Low-Dose 56Fe-Particle and Proton Radiation on Skeletal Muscle

Alexander Shtifman; Matthew J. Pezone; Sharath P. Sasi; Akhil Agarwal; Hannah Gee; Jin Song; Aleksandr Perepletchikov; Xinhua Yan; Raj Kishore; David A. Goukassian

It is unknown whether loss of skeletal muscle mass and function experienced by astronauts during space flight could be augmented by ionizing radiation (IR), such as low-dose high-charge and energy (HZE) particles or low-dose high-energy proton radiation. In the current study adult mice were irradiated whole-body with either a single dose of 15 cGy of 1 GeV/n 56Fe-particle or with a 90 cGy proton of 1 GeV/n proton particles. Both ionizing radiation types caused alterations in the skeletal muscle cytoplasmic Ca2+ ([Ca2+]i) homeostasis. 56Fe-particle irradiation also caused a reduction of depolarization-evoked Ca2+ release from the sarcoplasmic reticulum (SR). The increase in the [Ca2+]i was detected as early as 24 h after 56Fe-particle irradiation, while effects of proton irradiation were only evident at 72 h. In both instances [Ca2+]i returned to baseline at day 7 after irradiation. All 56Fe-particle irradiated samples revealed a significant number of centrally localized nuclei, a histologic manifestation of regenerating muscle, 7 days after irradiation. Neither unirradiated control or proton-irradiated samples exhibited such a phenotype. Protein analysis revealed significant increase in the phosphorylation of Akt, Erk1/2 and rpS6k on day 7 in 56Fe-particle irradiated skeletal muscle, but not proton or unirradiated skeletal muscle, suggesting activation of pro-survival signaling. Our findings suggest that a single low-dose 56Fe-particle or proton exposure is sufficient to affect Ca2+ homeostasis in skeletal muscle. However, only 56Fe-particle irradiation led to the appearance of central nuclei and activation of pro-survival pathways, suggesting an ongoing muscle damage/recovery process.


Asaio Journal | 2015

Inhaled Nitric Oxide Augments Left Ventricular Assist Device Capacity by Ameliorating Secondary Right Ventricular Failure.

Mark A. Lovich; Matthew J. Pezone; Matthew G. Wakim; Ryan Denton; Mikhail Y. Maslov; Michael R. Murray; Hisashi Tsukada; Arvind K. Agnihotri; Robert F. Roscigno; Lucas G. Gamero; Richard J. Gilbert

Clinical right ventricular (RV) impairment can occur with left ventricular assist device (LVAD) use, thereby compromising the therapeutic effectiveness. The underlying mechanism of this RV failure may be related to induced abnormalities of septal wall motion, RV distension and ischemia, decreased LV filling, and aberrations of LVAD flow. Inhaled nitric oxide (NO), a potent pulmonary vasodilator, may reduce RV afterload, and thereby increase LV filling, LVAD flow, and cardiac output (CO). To investigate the mechanisms associated with LVAD-induced RV dysfunction and its treatment, we created a swine model of hypoxia-induced pulmonary hypertension and acute LVAD-induced RV failure and assessed the physiological effects of NO. Increased LVAD speed resulted in linear increases in LVAD flow until pulse pressure narrowed. Higher speeds induced flow instability, LV collapse, a precipitous fall of both LVAD flow and CO. Nitric oxide (20 ppm) treatment significantly increased the maximal achievable LVAD speed, LVAD flow, CO, and LV diameter. Nitric oxide resulted in decreased pulmonary vascular resistance and RV distension, increased RV ejection, promoted LV filling and improved LVAD performance. Inhaled NO may thus have broad utility for the management of biventricular disease managed by LVAD implantation through the effects of NO on LV and RV wall dynamics.


Anesthesiology | 2016

Infusion System Architecture Impacts the Ability of Intensive Care Nurses to Maintain Hemodynamic Stability in a Living Swine Simulator.

Matthew J. Pezone; Robert A. Peterfreund; Mikhail Y. Maslov; Radhika R. Govindaswamy; Mark A. Lovich

Background:The authors have previously shown that drug infusion systems with large common volumes exhibit long delays in reaching steady-state drug delivery and pharmacodynamic effects compared with smaller common-volume systems. The authors hypothesized that such delays can impede the pharmacologic restoration of hemodynamic stability. Methods:The authors created a living swine simulator of hemodynamic instability in which occlusion balloons in the aorta and inferior vena cava (IVC) were used to manipulate blood pressure. Experienced intensive care unit nurses blinded to the use of small or large common-volume infusion systems were instructed to maintain mean arterial blood pressure between 70 and 90 mmHg using only sodium nitroprusside and norepinephrine infusions. Four conditions (IVC or aortic occlusions and small or large common volume) were tested 12 times in eight animals. Results:After aortic occlusion, the time to restore mean arterial pressure to range (t1: 2.4 ± 1.4 vs. 5.0 ± 2.3 min, P = 0.003, average ± SD), time-out-of-range (tOR: 6.2 ± 3.5 vs. 9.5 ± 3.4 min, P = 0.028), and area-out-of-range (pressure–time integral: 84 ± 47 vs. 170 ± 100 mmHg·min, P = 0.018) were all lower with smaller common volumes. After IVC occlusion, t1 (3.7 ± 2.2 vs. 7.1 ± 2.6 min, P = 0.002), tOR (6.3 ± 3.5 vs. 11 ± 3.0 min, P = 0.007), and area-out-of-range (110 ± 93 vs. 270 ± 140 mmHg·min, P = 0.003) were all lower with smaller common volumes. Common-volume size did not impact the total amount infused of either drug. Conclusions:Nurses did not respond as effectively to hemodynamic instability when drugs flowed through large common-volume infusion systems. These findings suggest that drug infusion system common volume may have clinical impact, should be minimized to the greatest extent possible, and warrants clinical investigations.


Heart Lung and Circulation | 2014

Use of pressure-volume conductance catheters in real-time cardiovascular experimentation.

Abraham E. Wei; Mikhail Y. Maslov; Matthew J. Pezone; Elazer R. Edelman; Mark A. Lovich

BACKGROUND Most applications of pressure-volume conductance catheter measurements assess cardiovascular function at a single point in time after genetic, pharmacologic, infectious, nutritional, or toxicologic manipulation. Use of these catheters as a continuous monitor, however, is fraught with complexities and limitations. METHODS Examples of the limitations and optimal use of conductance catheters as a continuous, real-time monitor of cardiovascular function are demonstrated during inotropic drug infusion in anesthetised rats. RESULTS Inotropic drug infusion may alter ventricular dimensions causing relative movement of a well-positioned catheter, generating artifacts, including an abrupt pressure rise at end-systole that leads to over estimation of indices of contractility (max dP/dt) and loss of stroke volume signal. Simple rotation of the catheter, echocardiography-guided placement to the centre of the ventricle, or ventricular expansion through crystalloid infusion may correct for these artifacts. Fluid administration, however, alters left ventricular end-diastolic pressure and volume and therefore stroke volume, thereby obscuring continuous real-time haemodynamic measurements. CONCLUSIONS Pressure-volume artifacts during inotropic infusion are caused by physical contact of the catheter with endocardium. Repeated correction of catheter position may be required to use pressure volume catheters as a continuous real-time monitor during manipulations that alter ventricular dimensions, such as inotropic therapy.


Nitric Oxide | 2016

Nitrogen dioxide reducing ascorbic acid technologies in the ventilator circuit leads to uniform NO concentration during inspiration.

Matthew J. Pezone; Matthew G. Wakim; Ryan Denton; Lucas G. Gamero; Robert F. Roscigno; Richard J. Gilbert; Mark A. Lovich


PMC | 2015

Vascular Dilation, Tachycardia, and Increased Inotropy Occur Sequentially with Increasing Epinephrine Dose Rate, Plasma and Myocardial Concentrations, and cAMP

Mikhail Y. Maslov; Abraham E. Wei; Matthew J. Pezone; Mark A. Lovich; Elazer R. Edelman

Collaboration


Dive into the Matthew J. Pezone's collaboration.

Top Co-Authors

Avatar

Mark A. Lovich

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elazer R. Edelman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Groothuis

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge