Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Abraham E. Wei is active.

Publication


Featured researches published by Abraham E. Wei.


Anesthesia & Analgesia | 2013

Drug infusion system manifold dead-volume impacts the delivery response time to changes in infused medication doses in vitro and also in vivo in anesthetized swine.

Mark A. Lovich; Matthew G. Wakim; Abraham E. Wei; Michael J. Parker; Mikhail Y. Maslov; Matthew J. Pezone; Hisashi Tsukada; Robert A. Peterfreund

BACKGROUND: IV infusion systems can be configured with manifolds connecting multiple drug infusion lines to transcutaneous catheters. Prior in vitro studies suggest that there may be significant lag times for drug delivery to reflect changes in infusion rates set at the pump, especially with low drug and carrier flows and larger infusion system dead-volumes. Drug manifolds allow multiple infusions to connect to a single catheter port but add dead-volume. We hypothesized that the time course of physiological responses to drug infusion in vivo reflects the impact of dead-volume on drug delivery. METHODS: The kinetic response to starting and stopping epinephrine infusion ([3 mL/h] with constant carrier flow [10 mL/h]) was compared for high- and low-dead-volume manifolds in vitro and in vivo. A manifold consisting of 4 sequential stopcocks with drug entering at the most upstream port was contrasted with a novel design comprising a tube with separate coaxial channels meeting at the downstream connector to the catheter, which virtually eliminates the manifold contribution to the dead-volume. The time to 50% (T50) and 90% (T90) increase or decrease in drug delivery in vitro or contractile response in a swine model in vivo were calculated for initiation and cessation of drug infusion. RESULTS: The time to steady state after initiation and cessation of drug infusion both in vitro and in vivo was much less with the coaxial low-dead-volume manifold than with the high-volume design. Drug delivery after initiation in vitro reached 50% and 90% of steady state in 1.4 ± 0.12 and 2.2 ± 0.42 minutes with the low-dead-volume manifold and in 7.1 ± 0.58 and 9.8 ± 1.6 minutes with the high-dead-volume manifold, respectively. The contractility in vivo reached 50% and 90% of the full response after drug initiation in 4.3 ± 1.3 and 9.9 ± 3.9 minutes with the low-dead-volume manifold and 11 ± 1.2 and 17 ± 2.6 minutes with the high-dead-volume manifold, respectively. Drug delivery in vitro decreased by 50% and 90% after drug cessation in 1.9 ± 0.17 and 3.5 ± 0.61 minutes with the low-dead-volume manifold and 10.0 ± 1.0 and 17.0 ± 2.8 minutes with the high-dead-volume manifold, respectively. The contractility in vivo decreased by 50% and 90% with drug cessation in 4.1 ± 1.1 and 14 ± 5.2 with the low-dead-volume manifold and 12 ± 2.7 and 23 ± 5.6 minutes with the high-dead-volume manifold, respectively. CONCLUSIONS: The architecture of the manifold impacts the in vivo biologic response, and the drug delivery rate, to changes in drug infusion rate set at the pump.


Journal of Controlled Release | 2013

High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: An example with epicardial inotropic drug delivery

Mikhail Y. Maslov; Elazer R. Edelman; Abraham E. Wei; Matthew J. Pezone; Mark A. Lovich

Local drug delivery preferentially loads target tissues with a concentration gradient from the surface or point of release that tapers down to more distant sites. Drug that diffuses down this gradient must be in unbound form, but such drug can only elicit a biologic effect through receptor interactions. Drug excess loads tissues, increasing gradients and driving penetration, but with limited added biological response. We examined the hypothesis that local application reduces dramatically systemic circulating drug levels but leads to significantly higher tissue drug concentration than might be needed with systemic infusion in a rat model of local epicardial inotropic therapy. Epinephrine was infused systemically or released locally to the anterior wall of the heart using a novel polymeric platform that provides steady, sustained release over a range of precise doses. Epinephrine tissue concentration, upregulation of cAMP, and global left ventricular response were measured at equivalent doses and at doses equally effective in raising indices of contractility. The contractile stimulation by epinephrine was linked to drug tissue levels and commensurate cAMP upregulation for IV systemic infusion, but not with local epicardial delivery. Though cAMP was a powerful predictor of contractility with local application, tissue epinephrine levels were high and variable--only a small fraction of the deposited epinephrine was utilized in second messenger signaling and biologic effect. The remainder of deposited drug was likely used in diffusive transport and distribution. Systemic side effects were far more profound with IV infusion which, though it increased contractility, also induced tachycardia and loss of systemic vascular resistance, which were not seen with local application. Local epicardial inotropic delivery illustrates then a paradigm of how target tissues differentially handle and utilize drug compared to systemic infusion.


Nitric Oxide | 2011

Use of ultra pure nitric oxide generated by the reduction of nitrogen dioxide to reverse pulmonary hypertension in hypoxemic swine.

Mark A. Lovich; Natalie K. Bruno; Charles P. Plant; Abraham E. Wei; Gregory Vasquez; Bryan Johnson; David H. Fine; Richard J. Gilbert

Inhaled nitric oxide (NO) has the capacity to selectively dilate pulmonary blood vessels, and thus enhance the matching of ventilation and perfusion, improve oxygenation and decrease pulmonary hypertension. However, existing approaches for the administration of inhaled NO are associated with the co-delivery of potentially toxic concentrations of nitrogen dioxide (NO2) due to the oxidation of NO in oxygen rich environments. We tested the ability of a novel methodology for generating highly purified NO through the reduction of NO2 by ascorbic acid to reverse pulmonary hypertension. In vitro testing demonstrated that the NO output of the novel device is ultrapure and free of NO2. An in vivo hypoxemic swine model of pulmonary hypertension was used to examine the dose response to NO in terms of pulmonary pressures and pulmonary vascular resistance. Pulmonary hypertension was induced by lowering inspired oxygen to 15% prior to treatment with inhaled ultra purified NO (1, 5, 20, and 80PPM). Hypoxemia increased mean pulmonary artery pressures and pulmonary vascular resistance. Inhaled ultra purified NO doses (down to 1PPM) show a marked reduction of hypoxemia-induced pulmonary vascular resistance. These experiments demonstrate a simple and robust method to generate purified inhaled NO that is devoid of NO2 and capable of reversing hypoxemia induced pulmonary hypertension.


Nitric Oxide | 2014

Generation of purified nitric oxide from liquid N2O4 for the treatment of pulmonary hypertension in hypoxemic swine.

Mark A. Lovich; David H. Fine; Ryan Denton; Matt G. Wakim; Abraham E. Wei; Mikhail Y. Maslov; Lucas G. Gamero; Gregory Vasquez; Bryan Johnson; Robert F. Roscigno; Richard J. Gilbert

Inhaled nitric oxide (NO) selectively dilates pulmonary blood vessels, reduces pulmonary vascular resistance (PVR), and enhances ventilation-perfusion matching. However, existing modes of delivery for the treatment of chronic pulmonary hypertension are limited due to the bulk and heft of large tanks of compressed gas. We present a novel system for the generation of inhaled NO that is based on the initial heat-induced evaporation of liquid N2O4 into gas phase NO2 followed by the room temperature reduction to NO by an antioxidant, ascorbic acid cartridge just prior to inhalation. The biologic effects of NO generated from liquid N2O4 were compared with the effects of NO gas, on increased mean pulmonary artery pressure (mPAP) and PVR in a hypoxemic (FiO2 15%) swine model of pulmonary hypertension. We showed that NO concentration varied directly with the fixed cross sectional flow of the outflow aperture when studied at temperatures of 45, 47.5 and 50°C and was independent of the rate of heating. Liquid N2O4-sourced NO at 1, 5, and 20 ppm significantly reduced the elevated mPAP and PVR induced by experimental hypoxemia and was biologically indistinguishable from gas source NO in this model. These experiments show that it is feasible to generate highly purified NO gas from small volumes of liquid N2O4 at concentrations sufficient to lower mPAP and PVR in hypoxemic swine, and suggest that a miniaturized ambulatory system designed to generate biologically active NO from liquid N2O4 is achievable.


Anesthesiology | 2015

Computer control of drug delivery by continuous intravenous infusion: bridging the gap between intended and actual drug delivery.

Michael J. Parker; Mark A. Lovich; Amy C. Tsao; Abraham E. Wei; Matthew G. Wakim; Mikhail Y. Maslov; Hisashi Tsukada; Robert A. Peterfreund

Background:Intravenous drug infusion driven by syringe pumps may lead to substantial temporal lags in achieving steady-state delivery at target levels when using very low flow rates (“microinfusion”). This study evaluated computer algorithms for reducing temporal lags via coordinated control of drug and carrier flows. Methods:Novel computer control algorithms were developed based on mathematical models of fluid flow. Algorithm 1 controlled initiation of drug infusion and algorithm 2 controlled changes to ongoing steady-state infusions. These algorithms were tested in vitro and in vivo using typical high and low dead volume infusion system architectures. One syringe pump infused a carrier fluid and a second infused drug. Drug and carrier flowed together via a manifold through standard central venous catheters. Samples were collected in vitro for quantitative delivery analysis. Parameters including left ventricular max dP/dt were recorded in vivo. Results:Regulation by algorithm 1 reduced delivery delay in vitro during infusion initiation by 69% (low dead volume) and 78% (high dead volume). Algorithmic control in vivo measuring % change in max dP/dt showed similar results (55% for low dead volume and 64% for high dead volume). Algorithm 2 yielded greater precision in matching the magnitude and timing of intended changes in vivo and in vitro. Conclusions:Compared with conventional methods, algorithm-based computer control of carrier and drug flows can improve drug delivery by pump-driven intravenous infusion to better match intent. For norepinephrine infusions, the amount of drug reaching the bloodstream per time appears to be a dominant factor in the hemodynamic response to infusion.


Journal of Pharmaceutical Sciences | 2011

Local Epicardial Inotropic Drug Delivery Allows Targeted Pharmacologic Intervention with Preservation of Myocardial Loading Conditions

Mark A. Lovich; Abraham E. Wei; Mikhail Y. Maslov; Peter I. Wu; Elazer R. Edelman

Local myocardial application of inotropes may allow the study of pharmacologically augmented central myocardial contraction in the absence of confounding peripheral vasodilating effects and alterations in heart loading conditions. Novel alginate epicardial (EC) drug releasing platforms were used to deliver dobutamine to the left ventricle of rats. Pressure-volume analyses indicated that although both local and systemic intravenous (i.v.) use of inotropic drugs increase stroke volume and contractility, systemic infusion does so through heart unloading. Conversely, EC application preserves heart load and systemic blood pressure. EC dobutamine increased indices of contractility with minimal rise in heart rate and lower reduction in systemic vascular resistance than i.v. infusion. Drug sampling showed that dobutamine concentration was 650-fold higher in the anterior wall than in the inferior wall. The plasma dobutamine concentration with local delivery was about half as much as with systemic infusion. These data suggest that inotropic EC delivery has a localized effect and augments myocardial contraction by different mechanisms than systemic infusion, with far fewer side effects. These studies demonstrate a pharmacologic paradigm that may improve heart function without interference from effects on the vasculature, alterations in heart loading, and may ultimately improve the health of heart failure patients.


Heart Lung and Circulation | 2014

Use of pressure-volume conductance catheters in real-time cardiovascular experimentation.

Abraham E. Wei; Mikhail Y. Maslov; Matthew J. Pezone; Elazer R. Edelman; Mark A. Lovich

BACKGROUND Most applications of pressure-volume conductance catheter measurements assess cardiovascular function at a single point in time after genetic, pharmacologic, infectious, nutritional, or toxicologic manipulation. Use of these catheters as a continuous monitor, however, is fraught with complexities and limitations. METHODS Examples of the limitations and optimal use of conductance catheters as a continuous, real-time monitor of cardiovascular function are demonstrated during inotropic drug infusion in anesthetised rats. RESULTS Inotropic drug infusion may alter ventricular dimensions causing relative movement of a well-positioned catheter, generating artifacts, including an abrupt pressure rise at end-systole that leads to over estimation of indices of contractility (max dP/dt) and loss of stroke volume signal. Simple rotation of the catheter, echocardiography-guided placement to the centre of the ventricle, or ventricular expansion through crystalloid infusion may correct for these artifacts. Fluid administration, however, alters left ventricular end-diastolic pressure and volume and therefore stroke volume, thereby obscuring continuous real-time haemodynamic measurements. CONCLUSIONS Pressure-volume artifacts during inotropic infusion are caused by physical contact of the catheter with endocardium. Repeated correction of catheter position may be required to use pressure volume catheters as a continuous real-time monitor during manipulations that alter ventricular dimensions, such as inotropic therapy.


PMC | 2015

Vascular Dilation, Tachycardia, and Increased Inotropy Occur Sequentially with Increasing Epinephrine Dose Rate, Plasma and Myocardial Concentrations, and cAMP

Mikhail Y. Maslov; Abraham E. Wei; Matthew J. Pezone; Mark A. Lovich; Elazer R. Edelman


PMC | 2014

Myocardial drug distribution generated from local epicardial application: Potential impact of cardiac capillary perfusion in a swine model using epinephrine

Mikhail Y. Maslov; Elazer R. Edelman; Matthew J. Pezone; Abraham E. Wei; Matthew G. Wakim; Michael R. Murray; Hisashi Tsukada; Iraklis S. Gerogiannis; Adam Groothuis; Mark A. Lovich


/data/revues/14439506/v23i11/S1443950614003308/ | 2014

Use of Pressure-volume Conductance Catheters in Real-time Cardiovascular Experimentation

Abraham E. Wei; Mikhail Y. Maslov; Matthew J. Pezone; Elazer R. Edelman; Mark A. Lovich

Collaboration


Dive into the Abraham E. Wei's collaboration.

Top Co-Authors

Avatar

Mark A. Lovich

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elazer R. Edelman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Parker

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Groothuis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge