Matthew J. Widlansky
University of Hawaii
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew J. Widlansky.
Nature | 2012
Wenju Cai; Matthieu Lengaigne; Simon Borlace; Matthew D. Collins; Tim Cowan; Michael J. McPhaden; Axel Timmermann; Scott B. Power; Josephine R. Brown; Christophe Menkes; Arona Ngari; Emmanuel Vincent; Matthew J. Widlansky
The South Pacific convergence zone (SPCZ) is the Southern Hemisphere’s most expansive and persistent rain band, extending from the equatorial western Pacific Ocean southeastward towards French Polynesia. Owing to its strong rainfall gradient, a small displacement in the position of the SPCZ causes drastic changes to hydroclimatic conditions and the frequency of extreme weather events—such as droughts, floods and tropical cyclones—experienced by vulnerable island countries in the region. The SPCZ position varies from its climatological mean location with the El Niño/Southern Oscillation (ENSO), moving a few degrees northward during moderate El Niño events and southward during La Niña events. During strong El Niño events, however, the SPCZ undergoes an extreme swing—by up to ten degrees of latitude toward the Equator—and collapses to a more zonally oriented structure with commensurately severe weather impacts. Understanding changes in the characteristics of the SPCZ in a changing climate is therefore of broad scientific and socioeconomic interest. Here we present climate modelling evidence for a near doubling in the occurrences of zonal SPCZ events between the periods 1891–1990 and 1991–2090 in response to greenhouse warming, even in the absence of a consensus on how ENSO will change. We estimate the increase in zonal SPCZ events from an aggregation of the climate models in the Coupled Model Intercomparison Project phases 3 and 5 (CMIP3 and CMIP5) multi-model database that are able to simulate such events. The change is caused by a projected enhanced equatorial warming in the Pacific and may lead to more frequent occurrences of extreme events across the Pacific island nations most affected by zonal SPCZ events.
Journal of Geophysical Research | 2014
Alexandre Ganachaud; Sophie Cravatte; Angélique Mélet; Andreas Schiller; Neil J. Holbrook; B.M. Sloyan; Matthew J. Widlansky; Melissa Bowen; Jacques Verron; P. Wiles; Ken Ridgway; Philip Sutton; Janet Sprintall; Craig R. Steinberg; Gary B. Brassington; Wenju Cai; Russ E. Davis; F. Gasparin; Lionel Gourdeau; Takuya Hasegawa; William S. Kessler; Christophe Maes; Ken Takahashi; Kelvin J. Richards; Uwe Send
The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way, the SEC encounters the numerous islands and straits of the Southwest Pacific and forms boundary currents and jets that eventually redistribute water to the equator and high latitudes. The transit in the Coral, Solomon, and Tasman Seas is of great importance to the climate system because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate the El Nino-Southern Oscillation, while the southward transports influence the climate and biodiversity in the Tasman Sea. After 7 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. This paper provides a review of recent advancements and discusses our current knowledge gaps and important emerging research directions.
Bulletin of the American Meteorological Society | 2015
Michael J. McPhaden; Axel Timmermann; Matthew J. Widlansky; Magdalena A. Balmaseda; Timothy N. Stockdale
AbstractForty years ago, Klaus Wyrtki of the University of Hawaii launched an “El Nino Watch” expedition to the eastern equatorial Pacific to document oceanographic changes that were expected to develop during the onset of an El Nino event in early 1975. He and his colleagues used a very simple atmospheric pressure index to predict the event and convinced the National Science Foundation and Office of Naval Research to support an expedition to the eastern Pacific on relatively short notice. An anomalous warming was detected during the first half of the expedition, but it quickly dissipated. Given the state of the art in El Nino research at the time, Wyrtki and colleagues could offer no explanation for why the initial warming failed to amplify, nor could they connect what they observed to what was happening in other parts of the basin prior to and during the expedition. With the benefit of hindsight, the authors provide a basin-scale context for what the expedition observed, elucidate the dynamical processe...
Journal of Climate | 2014
Matthew J. Widlansky; Axel Timmermann; Shayne McGregor; Malte F. Stuecker; Wenju Cai
AbstractDuring strong El Nino events, sea level drops around some tropical western Pacific islands by up to 20–30 cm. Such events (referred to as taimasa in Samoa) expose shallow reefs, thereby causing severe damage to associated coral ecosystems and contributing to the formation of microatolls. During the termination of strong El Nino events, a southward movement of weak trade winds and the development of an anomalous anticyclone in the Philippine Sea are shown to force an interhemispheric sea level seesaw in the tropical Pacific that enhances and prolongs extreme low sea levels in the southwestern Pacific. Spectral features, in addition to wind-forced linear shallow water ocean model experiments, identify a nonlinear interaction between El Nino and the annual cycle as the main cause of these sea level anomalies.
Science Advances | 2015
Matthew J. Widlansky; Axel Timmermann; Wenju Cai
Using climate models forced by increasing greenhouse gases, we find a doubling in extreme sea levels in the tropical Pacific. Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño–Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño–related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise.
Journal of Climate | 2015
Matthew J. Niznik; Benjamin R. Lintner; Adrian J. Matthews; Matthew J. Widlansky
AbstractThe South Pacific convergence zone (SPCZ) is simulated as too zonal a feature in the current generation of climate models, including those in phase 5 of the Coupled Model Intercomparison Project (CMIP5). This zonal bias induces errors in tropical convective heating, with subsequent effects on global circulation. The SPCZ structure, particularly in the subtropics, is governed by the tropical–extratropical interaction between transient synoptic systems and the mean background state. In this study, analysis of synoptic variability in the simulated subtropical SPCZ reveals that the basic mechanism of tropical–extratropical interaction is generally well simulated, with storms approaching the SPCZ along comparable trajectories to observations. However, there is a broad spread in mean precipitation and its variability across the CMIP5 ensemble. Intermodel spread appears to relate to a biased background state in which the synoptic waves propagate. In particular, the region of mean negative zonal stretchin...
Climate Dynamics | 2011
Matthew J. Widlansky; Peter J. Webster; Carlos D. Hoyos
Nature Climate Change | 2013
Matthew J. Widlansky; Axel Timmermann; Karl Stein; Shayne McGregor; Niklas Schneider; Matthew H. England; Matthieu Lengaigne; Wenju Cai
CLIVAR Exchanges No. 61 | 2013
Alexandre Ganachaud; Melissa Bowen; Gary B. Brassington; Wenju Cai; Sophie Cravatte; Russ E. Davis; Lionel Gourdeau; Toshihiro Hasegawa; Katherine Hill; Neil J. Holbrook; William S. Kessler; Christpohe Maes; Angélique Mélet; Bo Qiu; Ken Ridgway; Dean Roemmich; Andreas Schiller; Uwe Send; Bernadette M. Sloyan; Janet Sprintall; Craig R. Steinberg; Phil Sutton; Jacques Verron; Matthew J. Widlansky; P. Wiles
Fisheries Oceanography | 2018
Roberto Venegas; Thomas Oliver; Russell E. Brainard; Mudjekeewis D. Santos; Rollan Geronimo; Matthew J. Widlansky