Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Jessulat is active.

Publication


Featured researches published by Matthew Jessulat.


BMC Bioinformatics | 2006

PIPE: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs

Sylvain Pitre; Frank K. H. A. Dehne; Albert Chan; James Cheetham; Alex Duong; Andrew Emili; Marinella Gebbia; Jack Greenblatt; Matthew Jessulat; Nevan J. Krogan; Xuemei Luo; Ashkan Golshani

BackgroundIdentification of protein interaction networks has received considerable attention in the post-genomic era. The currently available biochemical approaches used to detect protein-protein interactions are all time and labour intensive. Consequently there is a growing need for the development of computational tools that are capable of effectively identifying such interactions.ResultsHere we explain the development and implementation of a novel Protein-Protein Interaction Prediction Engine termed PIPE. This tool is capable of predicting protein-protein interactions for any target pair of the yeast Saccharomyces cerevisiae proteins from their primary structure and without the need for any additional information or predictions about the proteins. PIPE showed a sensitivity of 61% for detecting any yeast protein interaction with 89% specificity and an overall accuracy of 75%. This rate of success is comparable to those associated with the most commonly used biochemical techniques. Using PIPE, we identified a novel interaction between YGL227W (vid30) and YMR135C (gid8) yeast proteins. This lead us to the identification of a novel yeast complex that here we term vid30 complex (vid30c). The observed interaction was confirmed by tandem affinity purification (TAP tag), verifying the ability of PIPE to predict novel protein-protein interactions. We then used PIPE analysis to investigate the internal architecture of vid30c. It appeared from PIPE analysis that vid30c may consist of a core and a secondary component. Generation of yeast gene deletion strains combined with TAP tagging analysis indicated that the deletion of a member of the core component interfered with the formation of vid30c, however, deletion of a member of the secondary component had little effect (if any) on the formation of vid30c. Also, PIPE can be used to analyse yeast proteins for which TAP tagging fails, thereby allowing us to predict protein interactions that are not included in genome-wide yeast TAP tagging projects.ConclusionPIPE analysis can predict yeast protein-protein interactions. Also, PIPE analysis can be used to study the internal architecture of yeast protein complexes. The data also suggests that a finite set of short polypeptide signals seem to be responsible for the majority of the yeast protein-protein interactions.


Nature Chemical Biology | 2013

Mapping the functional yeast ABC transporter interactome

Jamie Snider; Asad Hanif; Mid Eum Lee; Ke Jin; Analyn Yu; Chris Graham; Matthew Chuk; Dunja Damjanovic; Marta Wierzbicka; Priscilla Tang; Dina Balderes; Victoria Wong; Matthew Jessulat; Katelyn Darowski; Bryan Joseph San Luis; Igor Shevelev; Stephen L. Sturley; Charles Boone; Jack Greenblatt; Zhaolei Zhang; Christian M. Paumi; Mohan Babu; Hay-Oak Park; Susan Michaelis; Igor Stagljar

ABC transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used Membrane Yeast Two-Hybrid (MYTH) technology to map the protein interactome of all non-mitochondrial ABC transporters in the model organism Saccharomy cescerevisiae, and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated interactome. We show that ABC transporters physically associate with proteins involved in a surprisingly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters.


BMC Bioinformatics | 2007

Colony size measurement of the yeast gene deletion strains for functional genomics.

Negar Memarian; Matthew Jessulat; Javad Alirezaie; Nadereh Mir-Rashed; Jianhua Xu; Mehri Zareie; Myron L. Smith; Ashkan Golshani

BackgroundNumerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences.ResultsHere, we developed a computerized image analysis system called Growth Detector (GD), to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research.ConclusionGD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations.


BMC Chemical Biology | 2010

Chemical-genetic profile analysis of five inhibitory compounds in yeast.

Alamgir; Veronika Erukova; Matthew Jessulat; Ali Azizi; Ashkan Golshani

Background Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Results Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Conclusion Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.


Scientific Reports | 2012

Short Co-occurring Polypeptide Regions Can Predict Global Protein Interaction Maps

Sylvain Pitre; Mohsen Hooshyar; Andrew Schoenrock; Bahram Samanfar; Matthew Jessulat; James R. Green; Frank K. H. A. Dehne; Ashkan Golshani

A goal of the post-genomics era has been to elucidate a detailed global map of protein-protein interactions (PPIs) within a cell. Here, we show that the presence of co-occurring short polypeptide sequences between interacting protein partners appears to be conserved across different organisms. We present an algorithm to automatically generate PPI prediction method parameters for various organisms and illustrate that global PPIs can be predicted from previously reported PPIs within the same or a different organism using protein primary sequences. The PPI prediction code is further accelerated through the use of parallel multi-core programming, which improves its usability for large scale or proteome-wide PPI prediction. We predict and analyze hundreds of novel human PPIs, experimentally confirm protein functions and importantly predict the first genome-wide PPI maps for S. pombe (∼9,000 PPIs) and C. elegans (∼37,500 PPIs).


BMC Genomics | 2008

Chemical-genetic profile analysis in yeast suggests that a previously uncharacterized open reading frame, YBR261C, affects protein synthesis

Alamgir; Veronika Eroukova; Matthew Jessulat; Jianhua Xu; Ashkan Golshani

BackgroundFunctional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis.ResultsAs expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis.ConclusionWe show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s).


Expert Opinion on Drug Discovery | 2011

Recent advances in protein-protein interaction prediction: experimental and computational methods.

Matthew Jessulat; Sylvain Pitre; Yuan Gui; Mohsen Hooshyar; Katayoun Omidi; Bahram Samanfar; Le Hoa Tan; Alamgir; James R. Green; Frank K. H. A. Dehne; Ashkan Golshani

Introduction: Proteins within the cell act as part of complex networks, which allow pathways and processes to function. Therefore, understanding how proteins interact is a significant area of current research. Areas covered: This review aims to present an overview of key experimental techniques (yeast two-hybrid, tandem affinity purification and protein microarrays) used to discover protein–protein interactions (PPIs), as well as to briefly discuss certain computational methods for predicting protein interactions based on gene localization, phylogenetic information, 3D structural modeling or primary protein sequence data. Due to the large-scale applicability of primary sequence-based methods, the authors have chosen to focus on this strategy for our review. There is an emphasis on a recent algorithm called Protein Interaction Prediction Engine (PIPE) that can predict global PPIs. The readers will discover recent advances both in the practical determination of protein interaction and the strategies that are available to attempt to anticipate interactions without the time and costs of experimental work. Expert opinion: Global PPI maps can help understand the biology of complex diseases and facilitate the identification of novel drug target sites. This study describes different techniques used for PPI prediction that we believe will significantly impact the development of the field in a new future. We expect to see a growing number of similar techniques capable of large-scale PPI predictions.


Journal of Proteome Research | 2015

Mitochondrial Targets for Pharmacological Intervention in Human Disease

Ramy H. Malty; Matthew Jessulat; Ke Jin; Gabriel Musso; James Vlasblom; Sadhna Phanse; Zhaolei Zhang; Mohan Babu

Over the past several years, mitochondrial dysfunction has been linked to an increasing number of human illnesses, making mitochondrial proteins (MPs) an ever more appealing target for therapeutic intervention. With 20% of the mitochondrial proteome (312 of an estimated 1500 MPs) having known interactions with small molecules, MPs appear to be highly targetable. Yet, despite these targeted proteins functioning in a range of biological processes (including induction of apoptosis, calcium homeostasis, and metabolism), very few of the compounds targeting MPs find clinical use. Recent work has greatly expanded the number of proteins known to localize to the mitochondria and has generated a considerable increase in MP 3D structures available in public databases, allowing experimental screening and in silico prediction of mitochondrial drug targets on an unprecedented scale. Here, we summarize the current literature on clinically active drugs that target MPs, with a focus on how existing drug targets are distributed across biochemical pathways and organelle substructures. Also, we examine current strategies for mitochondrial drug discovery, focusing on genetic, proteomic, and chemogenomic assays, and relevant model systems. As cell models and screening techniques improve, MPs appear poised to emerge as relevant targets for a wide range of complex human diseases, an eventuality that can be expedited through systematic analysis of MP function.


Medical Mycology | 2010

Disruption of fungal cell wall by antifungal Echinacea extracts

Nadereh Mir-Rashed; Isabel Cruz; Matthew Jessulat; Michel Dumontier; Claire Chesnais; Juliana Ng; Virginie Treyvaud Amiguet; Ashkan Golshani; John T. Arnason; Myron L. Smith

In addition to widespread use in reducing the symptoms of colds and flu, Echinacea is traditionally employed to treat fungal and bacterial infections. However, to date the mechanism of antimicrobial activity of Echinacea extracts remains unclear. We utilized a set of ∼4,600 viable gene deletion mutants of Saccharomyces cerevisiae to identify mutations that increase sensitivity to Echinacea. Thus, a set of chemical-genetic profiles for 16 different Echinacea treatments was generated, from which a consensus set of 23 Echinacea-sensitive mutants was identified. Of the 23 mutants, only 16 have a reported function. Ten of these 16 are involved in cell wall integrity/structure suggesting that a target for Echinacea is the fungal cell wall. Follow-up analyses revealed an increase in sonication-associated cell death in the yeasts S. cerevisiae and Cryptococcus neoformans after Echinacea extract treatments. Furthermore, fluorescence microscopy showed that Echinacea-treated S. cerevisiae was significantly more prone to cell wall damage than non-treated cells. This study further demonstrates the potential of gene deletion arrays to understand natural product antifungal mode of action and provides compelling evidence that the fungal cell wall is a target of Echinacea extracts and may thus explain the utility of this phytomedicine in treating mycoses.


Molecular Biology of the Cell | 2015

Rab5-family guanine nucleotide exchange factors bind retromer and promote its recruitment to endosomes

Björn D. M. Bean; Michael Davey; Jamie Snider; Matthew Jessulat; Viktor Deineko; Matthew Tinney; Igor Stagljar; Mohan Babu; Elizabeth Conibear

The retromer complex regulates vesicle transport at endosomes. Different members of the VPS9 domain–containing Rab5-family guanine nucleotide exchange factors interact with the yeast retromer complex and mediate its endosomal localization.

Collaboration


Dive into the Matthew Jessulat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge