Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sadhna Phanse is active.

Publication


Featured researches published by Sadhna Phanse.


Nature Methods | 2008

eSGA: E. coli Synthetic Genetic Array analysis

Gareth Butland; Mohan Babu; J. Javier Díaz-Mejía; Fedyshyn Bohdana; Sadhna Phanse; Barbara Gold; Wenhong Yang; Joyce Li; Alla Gagarinova; Oxana Pogoutse; Hirotada Mori; Barry L. Wanner; Henry Lo; Jas Wasniewski; Constantine C. Christopoulos; Mehrab Ali; Pascal Venn; Anahita Safavi-Naini; Natalie Sourour; Simone Caron; Ja-Yeon Choi; Ludovic Laigle; Anaies Nazarians-Armavil; Avnish Deshpande; Sarah Joe; Kirill A. Datsenko; Natsuko Yamamoto; Brenda Andrews; Charles Boone; Huiming Ding

Physical and functional interactions define the molecular organization of the cell. Genetic interactions, or epistasis, tend to occur between gene products involved in parallel pathways or interlinked biological processes. High-throughput experimental systems to examine genetic interactions on a genome-wide scale have been devised for Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and Drosophila melanogaster, but have not been reported previously for prokaryotes. Here we describe the development of a quantitative screening procedure for monitoring bacterial genetic interactions based on conjugation of Escherichia coli deletion or hypomorphic strains to create double mutants on a genome-wide scale. The patterns of synthetic sickness and synthetic lethality (aggravating genetic interactions) we observed for certain double mutant combinations provided information about functional relationships and redundancy between pathways and enabled us to group bacterial gene products into functional modules.NOTE: In the version of this article initially published online two author names (Gabriel Moreno-Hagelseib and Constantine Christopolous) were spelled incorrectly. The correct author names are Gabriel Moreno-Hagelsieb and Constantine Christopoulos. The error has been corrected for the print, PDF and HTML versions of this article.


Molecular Microbiology | 2011

A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair

Mohan Babu; Natalia Beloglazova; Robert Flick; Chris Graham; Tatiana Skarina; Boguslaw Nocek; Alla Gagarinova; Oxana Pogoutse; Greg Brown; Andrew Binkowski; Sadhna Phanse; Andrzej Joachimiak; Eugene V. Koonin; Alexei Savchenko; Andrew Emili; Jack Greenblatt; A. Edwards; Alexander F. Yakunin

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR‐associated protein that is common to all CRISPR‐containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single‐stranded and branched DNAs including Holliday junctions, replication forks and 5′‐flaps. The crystal structure of YgbT and site‐directed mutagenesis have revealed the potential active site. Genome‐wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR–Cas system have a function in DNA repair.


Nature | 2012

Interaction landscape of membrane - protein complexes in Saccharomyces cerevisiae

Mohan Babu; James Vlasblom; Shuye Pu; Xinghua Guo; Chris Graham; Björn D. M. Bean; Helen E. Burston; Franco J. Vizeacoumar; Jamie Snider; Sadhna Phanse; Vincent Fong; Yuen Yi C. Tam; Michael Davey; Olha Hnatshak; Navgeet Bajaj; Shamanta Chandran; Thanuja Punna; Constantine Christopolous; Victoria Wong; Analyn Yu; Gouqing Zhong; Joyce Li; Igor Stagljar; Elizabeth Conibear; Andrew Emili; Jack Greenblatt

Macromolecular assemblies involving membrane proteins (MPs) serve vital biological roles and are prime drug targets in a variety of diseases. Large-scale affinity purification studies of soluble-protein complexes have been accomplished for diverse model organisms, but no global characterization of MP-complex membership has been described so far. Here we report a complete survey of 1,590 putative integral, peripheral and lipid-anchored MPs from Saccharomyces cerevisiae, which were affinity purified in the presence of non-denaturing detergents. The identities of the co-purifying proteins were determined by tandem mass spectrometry and subsequently used to derive a high-confidence physical interaction map encompassing 1,726 membrane protein–protein interactions and 501 putative heteromeric complexes associated with the various cellular membrane systems. Our analysis reveals unexpected physical associations underlying the membrane biology of eukaryotes and delineates the global topological landscape of the membrane interactome.


Nature | 2015

Panorama of ancient metazoan macromolecular complexes.

Cuihong Wan; Blake Borgeson; Sadhna Phanse; Fan Tu; Kevin Drew; Greg W. Clark; Xuejian Xiong; Olga Kagan; Julian Kwan; Alexandr Bezginov; Kyle Chessman; Swati Pal; Graham L. Cromar; Ophelia Papoulas; Zuyao Ni; Daniel R. Boutz; Snejana Stoilova; Pierre C. Havugimana; Xinghua Guo; Ramy H. Malty; Mihail Sarov; Jack Greenblatt; Mohan Babu; W. Brent Derry; Elisabeth R. M. Tillier; John B. Wallingford; John Parkinson; Edward M. Marcotte; Andrew Emili

Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, here we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we generated a draft conservation map consisting of more than one million putative high-confidence co-complex interactions for species with fully sequenced genomes that encompasses functional modules present broadly across all extant animals. Clustering reveals a spectrum of conservation, ranging from ancient eukaryotic assemblies that have probably served cellular housekeeping roles for at least one billion years, ancestral complexes that have accrued contemporary components, and rarer metazoan innovations linked to multicellularity. We validated these projections by independent co-fractionation experiments in evolutionarily distant species, affinity purification and functional analyses. The comprehensiveness, centrality and modularity of these reconstructed interactomes reflect their fundamental mechanistic importance and adaptive value to animal cell systems.


Nature Biotechnology | 2014

The binary protein-protein interaction landscape of Escherichia coli

Seesandra V. Rajagopala; Patricia Sikorski; Ashwani Kumar; Roberto Mosca; James Vlasblom; Roland Arnold; Jonathan Franca-Koh; Suman B. Pakala; Sadhna Phanse; Arnaud Ceol; Roman Häuser; Gabriella Siszler; Stefan Wuchty; Andrew Emili; Mohan Babu; Patrick Aloy; Rembert Pieper; Peter Uetz

Efforts to map the Escherichia coli interactome have identified several hundred macromolecular complexes, but direct binary protein-protein interactions (PPIs) have not been surveyed on a large scale. Here we performed yeast two-hybrid screens of 3,305 baits against 3,606 preys (∼70% of the E. coli proteome) in duplicate to generate a map of 2,234 interactions, which approximately doubles the number of known binary PPIs in E. coli. Integration of binary PPI and genetic-interaction data revealed functional dependencies among components involved in cellular processes, including envelope integrity, flagellum assembly and protein quality control. Many of the binary interactions that we could map in multiprotein complexes were informative regarding internal topology of complexes and indicated that interactions in complexes are substantially more conserved than those interactions connecting different complexes. This resource will be useful for inferring bacterial gene function and provides a draft reference of the basic physical wiring network of this evolutionarily important model microbe.


PLOS Genetics | 2011

Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

Mohan Babu; J. Javier Díaz-Mejía; James Vlasblom; Alla Gagarinova; Sadhna Phanse; Chris Graham; Fouad Yousif; Huiming Ding; Xuejian Xiong; Anaies Nazarians-Armavil; Alamgir; Mehrab Ali; Oxana Pogoutse; Asaf Peer; Roland Arnold; Magali Michaut; John Parkinson; Ashkan Golshani; Chris Whitfield; Gabriel Moreno-Hagelsieb; Jack Greenblatt; Andrew Emili

As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target.


Cell Reports | 2014

Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

Edyta Marcon; Zuyao Ni; Shuye Pu; Andrei L. Turinsky; Sandra Smiley Trimble; Jonathan B. Olsen; Rosalind Silverman-Gavrila; Lorelei Silverman-Gavrila; Sadhna Phanse; Hongbo Guo; Guoqing Zhong; Xinghua Guo; Peter Young; Swneke D. Bailey; Denitza Roudeva; Dorothy Yanling Zhao; Johannes A. Hewel; Joyce Li; Susanne Gräslund; Marcin Paduch; Anthony A. Kossiakoff; Mathieu Lupien; Andrew Emili; Jack Greenblatt

Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision) network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.


Bioinformatics | 2015

Novel function discovery with GeneMANIA: a new integrated resource for gene function prediction in Escherichia coli

James Vlasblom; Khalid Zuberi; Harold Rodriguez; Roland Arnold; Alla Gagarinova; Viktor Deineko; Ashwani Kumar; Elisa Leung; Kamran Rizzolo; Bahram Samanfar; Luke Chang; Sadhna Phanse; Ashkan Golshani; Jack Greenblatt; Walid A. Houry; Andrew Emili; Quaid Morris; Gary D. Bader; Mohan Babu

MOTIVATION The model bacterium Escherichia coli is among the best studied prokaryotes, yet nearly half of its proteins are still of unknown biological function. This is despite a wealth of available large-scale physical and genetic interaction data. To address this, we extended the GeneMANIA function prediction web application developed for model eukaryotes to support E.coli. RESULTS We integrated 48 distinct E.coli functional interaction datasets and used the GeneMANIA algorithm to produce thousands of novel functional predictions and prioritize genes for further functional assays. Our analysis achieved cross-validation performance comparable to that reported for eukaryotic model organisms, and revealed new functions for previously uncharacterized genes in specific bioprocesses, including components required for cell adhesion, iron-sulphur complex assembly and ribosome biogenesis. The GeneMANIA approach for network-based function prediction provides an innovative new tool for probing mechanisms underlying bacterial bioprocesses. CONTACT [email protected]; [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Journal of Proteome Research | 2015

Mitochondrial Targets for Pharmacological Intervention in Human Disease

Ramy H. Malty; Matthew Jessulat; Ke Jin; Gabriel Musso; James Vlasblom; Sadhna Phanse; Zhaolei Zhang; Mohan Babu

Over the past several years, mitochondrial dysfunction has been linked to an increasing number of human illnesses, making mitochondrial proteins (MPs) an ever more appealing target for therapeutic intervention. With 20% of the mitochondrial proteome (312 of an estimated 1500 MPs) having known interactions with small molecules, MPs appear to be highly targetable. Yet, despite these targeted proteins functioning in a range of biological processes (including induction of apoptosis, calcium homeostasis, and metabolism), very few of the compounds targeting MPs find clinical use. Recent work has greatly expanded the number of proteins known to localize to the mitochondria and has generated a considerable increase in MP 3D structures available in public databases, allowing experimental screening and in silico prediction of mitochondrial drug targets on an unprecedented scale. Here, we summarize the current literature on clinically active drugs that target MPs, with a focus on how existing drug targets are distributed across biochemical pathways and organelle substructures. Also, we examine current strategies for mitochondrial drug discovery, focusing on genetic, proteomic, and chemogenomic assays, and relevant model systems. As cell models and screening techniques improve, MPs appear poised to emerge as relevant targets for a wide range of complex human diseases, an eventuality that can be expedited through systematic analysis of MP function.


Cell Reports | 2016

Conditional Epistatic Interaction Maps Reveal Global Functional Rewiring of Genome Integrity Pathways in Escherichia coli

Ashwani Kumar; Natalia Beloglazova; Cedoljub Bundalovic-Torma; Sadhna Phanse; Viktor Deineko; Alla Gagarinova; Gabriel Musso; James Vlasblom; Sofia Lemak; Mohsen Hooshyar; Zoran Minic; Omar Wagih; Roberto Mosca; Patrick Aloy; Ashkan Golshani; John Parkinson; Andrew Emili; Alexander F. Yakunin; Mohan Babu

As antibiotic resistance is increasingly becoming a public health concern, an improved understanding of the bacterial DNA damage response (DDR), which is commonly targeted by antibiotics, could be of tremendous therapeutic value. Although the genetic components of the bacterial DDR have been studied extensively in isolation, how the underlying biological pathways interact functionally remains unclear. Here, we address this by performing systematic, unbiased, quantitative synthetic genetic interaction (GI) screens and uncover widespread changes in the GI network of the entire genomic integrity apparatus of Escherichia coli under standard and DNA-damaging growth conditions. The GI patterns of untreated cultures implicated two previously uncharacterized proteins (YhbQ and YqgF) as nucleases, whereas reorganization of the GI network after DNA damage revealed DDR roles for both annotated and uncharacterized genes. Analyses of pan-bacterial conservation patterns suggest that DDR mechanisms and functional relationships are near universal, highlighting a modular and highly adaptive genomic stress response.

Collaboration


Dive into the Sadhna Phanse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge