Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew L. Jones is active.

Publication


Featured researches published by Matthew L. Jones.


Journal of Thrombosis and Haemostasis | 2015

Use of next‐generation sequencing and candidate gene analysis to identify underlying defects in patients with inherited platelet function disorders

Vincenzo C. Leo; Neil V. Morgan; Danai Bem; Matthew L. Jones; Gillian C. Lowe; Marie Lordkipanidzé; Sian Drake; Michael A. Simpson; Paul Gissen; Andrew D Mumford; Steve P. Watson; Martina E. Daly

Inherited platelet function disorders (PFDs) are heterogeneous, and identification of the underlying genetic defects is difficult when based solely on phenotypic and clinical features of the patient.


Blood | 2014

Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: use of 96-well Optimul assay

Marie Lordkipanidzé; Gillian C. Lowe; Nicholas S. Kirkby; Melissa V. Chan; Martina H. Lundberg; Neil V. Morgan; Danai Bem; Shaista P. Nisar; Vincenzo C. Leo; Matthew L. Jones; Stuart J. Mundell; Martina E. Daly; Andrew D Mumford; Timothy D. Warner; Steve P. Watson

Up to 1% of the population have mild bleeding disorders, but these remain poorly characterized, particularly with regard to the roles of platelets. We have compared the usefulness of Optimul, a 96-well plate-based assay of 7 distinct pathways of platelet activation to characterize inherited platelet defects in comparison with light transmission aggregometry (LTA). Using Optimul and LTA, concentration-response curves were generated for arachidonic acid, ADP, collagen, epinephrine, Thrombin receptor activating-peptide, U46619, and ristocetin in samples from (1) healthy volunteers (n = 50), (2) healthy volunteers treated with antiplatelet agents in vitro (n = 10), and (3) patients with bleeding of unknown origin (n = 65). The assays gave concordant results in 82% of cases (κ = 0.62, P < .0001). Normal platelet function results were particularly predictive (sensitivity, 94%; negative predictive value, 91%), whereas a positive result was not always substantiated by LTA (specificity, 67%; positive predictive value, 77%). The Optimul assay was significantly more sensitive at characterizing defects in the thromboxane pathway, which presented with normal responses with LTA. The Optimul assay is sensitive to mild platelet defects, could be used as a rapid screening assay in patients presenting with bleeding symptoms, and detects changes in platelet function more readily than LTA. This trial was registered at www.isrctn.org as #ISRCTN 77951167.


Biochemical Journal | 2007

Coincident regulation of PKCδ in human platelets by phosphorylation of Tyr311 and Tyr565 and phospholipase C signalling

Kellie J. Hall; Matthew L. Jones; Alastair W. Poole

PKC (protein kinase C)d plays a complex role in platelets, having effects on both positive and negative signalling functions. It is phosphorylated on tyrosine residues in response to thrombin and collagen, and it has recently been shown that Tyr311 is phosphorylated in response to PAR (protease-activated receptor) 1 and PAR4 receptor activation. In the present study, we show that Tyr311 and Tyr565 are phosphorylated in response to thrombin, and have examined the interplay between phosphorylation and the classical lipid-mediated activation of PKCd. Phosphorylation of both Tyr311 and Tyr565 is dependent on Src kinase and PLC (phospholipase C) activity in response to thrombin. Importantly, direct allosteric activation of PKCd with PMA also induced phosphorylation of Tyr311 and Tyr565, and this was dependent on the activity of Src kinases, but not PLC. Membrane recruitment of PKCd is essential for phosphorylation of this tyrosine residue, but tyrosine phosphorylation is not required for membrane recruitment of PKCd. Both thrombin and PMA induce recruitment of PKCd to the membrane, and for thrombin, this recruitment is a PLC-dependent process. In order to address the functional role of tyrosine residue phosphorylation of PKCd, we demonstrate that phosphorylation can potentiate the activity of the kinase, although phosphorylation does not play a role in membrane recruitment of the kinase. PKCd is therefore regulated in a coincident fashion, PLC-dependent signals recruiting it to the plasma membrane and by phosphorylation on tyrosine residues, potentiating its activity.


Haematologica | 2010

Two patients with Hermansky Pudlak syndrome type 2 and novel mutations in AP3B1

Matt Wenham; Samantha Grieve; Michelle Cummins; Matthew L. Jones; Sarah Booth; Rachel Kilner; Philip Ancliff; Gillian M. Griffiths; Andrew D Mumford

Hermansky Pudlak syndrome type 2 (HPS2) is a rare disorder associated with mutations in the Adaptor Protein 3 (AP-3) complex, which is involved in sorting transmembrane proteins to lysosomes and related organelles. We now report 2 unrelated subjects with HPS2 who show a characteristic clinical phenotype of oculocutaneous albinism, platelet and T-lymphocyte dysfunction and neutropenia. The subjects were homozygous for different deletions within AP3B1 (g.del180242-180866, c.del153-156), which encodes the AP-3β3A subunit, resulting in frame shifts and introduction of nonsense substitutions (p.E693fsX13, p.E52fsX11). In the subject with p.E693fsX13, this resulted in expression of a truncated variant β3A protein. Cytotoxic T-lymphocyte (CTL) clones from both study subjects showed increased cell-surface expression of CD63 and reduced cytotoxicity. Platelets showed impaired aggregation and reduced uptake of 3H-serotonin. These findings are consistent with CTL granule and platelet dense granule defects, respectively. This report extends the clinical and laboratory description of HPS2.


Biochemical and Biophysical Research Communications | 2009

Characterization of a novel focal adhesion kinase inhibitor in human platelets.

Matthew L. Jones; Amelia J. Shawe-Taylor; Christopher M. Williams; Alastair W. Poole

Focal adhesion kinase (FAK) is activated in human platelets downstream of integrins, e.g. αIIbβ3, and other adhesion receptors e.g. GPVI. Mice in which platelets lack FAK have been shown to exhibit extended bleeding times and their platelets have been shown to display decreased spreading on fibrinogen-coated surfaces. Recently, a novel FAK inhibitor (PF-573,228) has become available, its selectivity for FAK shown in vitro and in cell lines. We determined the effect of this inhibitor on platelet function and signaling pathways. Like murine platelets lacking FAK, we found that PF-573,228 was effective at blocking human platelet spreading on fibrinogen-coated surfaces but did not affect the initial adhesion. We also found a reduced spreading on CRP-coated surfaces. Further analysis of the morphology of platelets adhered to these surfaces showed the defect in spreading occurred at the transition from filopodia to lamellipodia. Similar to that seen with murine neutrophils lacking FAK, we also observed an unexpected defect in intracellular calcium release in human platelets pre-treated with PF-573,228 which correlated with impaired dense granule secretion and aggregation. The aggregation defect could be partially rescued by addition of ADP, normally secreted from dense granules, suggesting that PF-573,228 has effects on FAK downstream of αIIbβ3 and elsewhere. Our data show that PF-573,228 is a useful tool for analysis of FAK function in cells and reveal that in human platelets FAK may regulate a rise in cell calcium and platelet spreading.


Journal of Thrombosis and Haemostasis | 2012

Rapid genetic diagnosis of heritable platelet function disorders with next-generation sequencing: proof-of-principle with Hermansky–Pudlak syndrome

Matthew L. Jones; Sherina L. Murden; Danai Bem; Stuart J. Mundell; Paul Gissen; Martina E. Daly; Steve P. Watson; Andrew D Mumford

M. L . JONES* , S . L . MURDEN* , D . BEM , S . J . MU N DELL , P . G I SSEN§ , M. E . DALY– , S . P . WATSO N , and A . D . MUMFORD, * ON BEHALF O F T HE UK GAPP STUDY G ROUP *Bristol Heart Institute & School of Cellular and Molecular Medicine, University of Bristol, Bristol; Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham; School of Physiology and Pharmacology, University of Bristol, Bristol; §Institute of Child Health and MRC Laboratory for Molecular Cell Biology, University College London, London; and –Department of Cardiovascular Science, University of Sheffield, Sheffield, UK


Thrombosis and Haemostasis | 2014

A novel thromboxane A2 receptor N42S variant results in reduced surface expression and platelet dysfunction

Shaista P. Nisar; Marie Lordkipanidzé; Matthew L. Jones; Ban Dawood; Sherina L. Murden; Margaret R. Cunningham; Andrew D Mumford; Jonathan T. Wilde; Steve P. Watson; Stuart J. Mundell; Gillian C. Lowe

A small number of thromboxane receptor variants have been described in patients with a bleeding history that result in platelet dysfunction. We have identified a patient with a history of significant bleeding, who expresses a novel heterozygous thromboxane receptor variant that predicts an asparagine to serine substitution (N42S). This asparagine is conserved across all class A GPCRs, suggesting a vital role for receptor structure and function.We investigated the functional consequences of the TP receptor heterozygous N42S substitution by performing platelet function studies on platelet-rich plasma taken from the patient and healthy controls. We investigated the N42S mutation by expressing the wild-type (WT) and mutant receptor in human embryonic kidney (HEK) cells. Aggregation studies showed an ablation of arachidonic acid responses in the patient, whilst there was right-ward shift of the U46619 concentration response curve (CRC). Thromboxane generation was unaffected. Calcium mobilisation studies in cells lines showed a rightward shift of the U46619 CRC in N42S-expressing cells compared to WT. Radioligand binding studies revealed a reduction in BMax in platelets taken from the patient and in N42S-expressing cells, whilst cell studies confirmed poor surface expression. We have identified a novel thromboxane receptor variant, N42S, which results in platelet dysfunction due to reduced surface expression. It is associated with a significant bleeding history in the patient in whom it was identified. This is the first description of a naturally occurring variant that results in the substitution of this highly conserved residue and confirms the importance of this residue for correct GPCR function.


Journal of Thrombosis and Haemostasis | 2013

Platelet dysfunction associated with the novel Trp29Cys thromboxane A₂ receptor variant.

Andrew D Mumford; Shaista P. Nisar; L. Darnige; Matthew L. Jones; C. Bachelot-Loza; Sophie Gandrille; F Zinzindohoue; A-M Fischer; Stuart J. Mundell; Pascale Gaussem

Genetic variations that affect the structure of the thromboxane A2 receptor (TP receptor) provide insights into the function of this key platelet and vascular receptor, but are very rare in unselected populations.


Journal of Thrombosis and Haemostasis | 2010

RGD-ligand mimetic antagonists of integrin alphaIIbbeta3 paradoxically enhance GPVI-induced human platelet activation

Matthew L. Jones; Matthew T. Harper; Ew Aitken; Christopher M. Williams; Alastair W. Poole

Summary.  Background: The integrin αIIbβ3 is the major mediator of platelet aggregation and has, therefore, become an important target of antithrombotic therapy. Antagonists of αIIbβ3, for example abciximab, tirofiban and eptifibatide, are used in the treatment of acute coronary syndromes. However, in addition to effective blockade of the integrin, binding of can induce conformational changes in the integrin and can also induce integrin clustering. This class effect of RGD‐ligand mimetics might, therefore, underlie paradoxical platelet activation and thrombosis previously reported. Objectives: To examine the components of signaling pathways and functional responses in platelets that may underlie this phenomenon of paradoxical platelet activation. Methods: We assessed the effect of lotrafiban, and other αIIbβ3 antagonists including the clinically used drug tirofiban, on tyrosine phosphorylation of key signaling proteins in platelets by immunoblotting and also platelet functional outputs such as cytosolic calcium responses, phosphatidylserine exposure (pro‐coagulant activity) and dense granule release. Results: In all cases, no effect of αIIbβ3 antagonists were observed on their own, but these integrin antagonists did lead to a marked potentiation of glycoprotein VI (GPVI)‐associated FcR γ‐chain phosphorylation, activation of Src family kinases and Syk kinase. This correlated with increased dense granule secretion, cytosolic calcium response and exposure of phosphatidylserine on the platelet surface. P2Y12 antagonism abolished the potentiated phosphatidylserine exposure and dense granule secretion but not the cytosolic calcium response. Conclusions: These data provide a mechanism for enhancement of platelet activity by αIIbβ3 inhibitors, but also reveal a potentially important signaling pathway operating from the integrin to GPVI signaling.


BMC Medical Genetics | 2013

Disruption of AP3B1 by a chromosome 5 inversion: a new disease mechanism in Hermansky-Pudlak syndrome type 2.

Matthew L. Jones; Sherina L. Murden; Claire Brooks; Viv Maloney; Richard A. Manning; Kimberly Gilmour; Vandana Bharadwaj; Josu de la Fuente; Subarna Chakravorty; Andrew D Mumford

BackgroundHermansky-Pudlak syndrome 2 (HPS2; OMIM #608233) is a rare, autosomal recessive disorder caused by loss-of-function genetic variations affecting AP3B1, which encodes the β3A subunit of the adaptor-related protein complex 3 (AP3). Phenotypic characteristics include reduced pigmentation, absent platelet dense granule secretion, neutropenia and reduced cytotoxic T lymphocyte (CTL) and natural killer (NK) cell function. To date HPS2 has been associated with non-synonymous, stop-gain or deletion-insertion nucleotide variations within the coding region of AP3B1.Case presentationWe describe a consanguineous female infant with reduced pigmentation, neutropenia and recurrent infections. Platelets displayed reduced aggregation and absent ATP secretion in response to collagen and ADP, indicating a platelet dense granule defect. There was increased basal surface expression of CD107a (lysosome-associated membrane protein 1(LAMP-1)) on NK cells and CTLs from the study subject and a smaller increase in the percentage of CD107a positive cells after stimulation compared to most healthy controls. Immunoblotting of protein extracts from EBV-transformed lymphoblasts from the index case showed absent expression of full-length AP-3 β3A subunit protein, confirming a phenotypic diagnosis of HPS2.The index case displayed a homozygous pericentric inv(5)(p15.1q14.1), which was also detected as a heterozygous defect in both parents of the index case. No loss of genetic material was demonstrated by microarray comparative genome hybridisation at 60kb resolution. Fluorescence in-situ hybridisation using the 189.6kb probe RP11-422I12, which maps to 5q14.1, demonstrated dual hybridisation to both 5q14.1 and 5p15.1 regions of the inverted Chr5. The RP11-422I12 probe maps from intron 1 to intron 16 of AP3B1, thus localising the 5q inversion breakpoint to within AP3B1. The probe RP11-211K15, which corresponds to an intergenic region on 5p also showed dual hybridisation, enabling localisation of the 5p inversion breakpoint.ConclusionThis case report extends the phenotypic description of the very rare disorder HPS2. Our demonstration of a homozygous Chr5 inversion predicted to disrupt AP3B1 gene provides a novel pathogenic mechanism for this disorder.

Collaboration


Dive into the Matthew L. Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danai Bem

University of Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge