Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew L. Kirwan is active.

Publication


Featured researches published by Matthew L. Kirwan.


Nature | 2013

Tidal wetland stability in the face of human impacts and sea-level rise

Matthew L. Kirwan; J. Patrick Megonigal

Coastal populations and wetlands have been intertwined for centuries, whereby humans both influence and depend on the extensive ecosystem services that wetlands provide. Although coastal wetlands have long been considered vulnerable to sea-level rise, recent work has identified fascinating feedbacks between plant growth and geomorphology that allow wetlands to actively resist the deleterious effects of sea-level rise. Humans alter the strength of these feedbacks by changing the climate, nutrient inputs, sediment delivery and subsidence rates. Whether wetlands continue to survive sea-level rise depends largely on how human impacts interact with rapid sea-level rise, and socio-economic factors that influence transgression into adjacent uplands.


Geophysical Research Letters | 2010

Limits on the adaptability of coastal marshes to rising sea level

Matthew L. Kirwan; Glenn R. Guntenspergen; Andrea D'Alpaos; James T. Morris; Simon M. Mudd; S. Temmerman

[1] Assumptions of a static landscape inspire predictions that about half of the world’s coastal wetlands will submerge during this century in response to sea‐level acceleration. In contrast, we use simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level. In contrast to previous sea‐level assessments, we find that non‐linear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea‐ level rise where suspended sediment concentrations are greater than ∼20 mg/L. Under scenarios of more rapid sea‐level rise (e.g., those that include ice sheet melting), marsheswill likelysubmerge neartheend ofthe 21stcentury. Our results emphasize that in areas of rapid geomorphic change, predicting the response of ecosystems to climate change requires consideration of the ability of biological processestomodifytheirphysicalenvironment.Citation: Kirwan, M. L., G. R. Guntenspergen, A. D’Alpaos, J. T. Morris, S. M. Mudd, and S. Temmerman (2010), Limits on the adaptability of coastal marshes to rising sea level, Geophys. Res. Lett., 37, L23401,


Proceedings of the National Academy of Sciences of the United States of America | 2007

A coupled geomorphic and ecological model of tidal marsh evolution

Matthew L. Kirwan; A. Brad Murray

The evolution of tidal marsh platforms and interwoven channel networks cannot be addressed without treating the two-way interactions that link biological and physical processes. We have developed a 3D model of tidal marsh accretion and channel network development that couples physical sediment transport processes with vegetation biomass productivity. Tidal flow tends to cause erosion, whereas vegetation biomass, a function of bed surface depth below high tide, influences the rate of sediment deposition and slope-driven transport processes such as creek bank slumping. With a steady, moderate rise in sea level, the model builds a marsh platform and channel network with accretion rates everywhere equal to the rate of sea-level rise, meaning water depths and biological productivity remain temporally constant. An increase in the rate of sea-level rise, or a reduction in sediment supply, causes marsh-surface depths, biomass productivity, and deposition rates to increase while simultaneously causing the channel network to expand. Vegetation on the marsh platform can promote a metastable equilibrium where the platform maintains elevation relative to a rapidly rising sea level, although disturbance to vegetation could cause irreversible loss of marsh habitat.


Reviews of Geophysics | 2012

Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

Sergio Fagherazzi; Matthew L. Kirwan; Simon M. Mudd; Glenn R. Guntenspergen; Stijn Temmerman; Andrea D'Alpaos; Johan van de Koppel; John M. Rybczyk; Enrique Reyes; Christopher Craft; Jonathan Clough

Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.


Water Resources Research | 2008

Biomorphodynamics: Physical-biological feedbacks that shape landscapes

A.B. Murray; M.A.F. Knaapen; M. Tal; Matthew L. Kirwan

Plants and animals affect morphological evolution in many environments. The term “ecogeomorphology” describes studies that address such effects. In this opinion article we use the term “biomorphodynamics” to characterize a subset of ecogeomorphologic studies: those that investigate not only the effects of organisms on physical processes and morphology but also how the biological processes depend on morphology and physical forcing. The two-way coupling precipitates feedbacks, leading to interesting modes of behavior, much like the coupling between flow/sediment transport and morphology leads to rich morphodynamic behaviors. Select examples illustrate how even the basic aspects of some systems cannot be understood without considering biomorphodynamic coupling. Prominent examples include the dynamic interactions between vegetation and flow/sediment transport that can determine river channel patterns and the multifaceted biomorphodynamic feedbacks shaping tidal marshes and channel networks. These examples suggest that the effects of morphology and physical processes on biology tend to operate over the timescale of the evolution of the morphological pattern. Thus, in field studies, which represent a snapshot in the pattern evolution, these effects are often not as obvious as the effects of biology on physical processes. However, numerical modeling indicates that the influences on biology from physical processes can play a key role in shaping landscapes and that even local and temporary vegetation disturbances can steer large-scale, long-term landscape evolution. The prevalence of biomorphodynamic research is burgeoning in recent years, driven by societal need and a confluence of complex systems–inspired modeling approaches in ecology and geomorphology. To make fundamental progress in understanding the dynamics of many landscapes, our community needs to increasingly learn to look for two-way, biomorphodynamic feedbacks and to collect new types of data to support the modeling of such emergent interactions.


Nature | 2012

Response of salt-marsh carbon accumulation to climate change

Matthew L. Kirwan; Simon M. Mudd

About half of annual marine carbon burial takes place in shallow water ecosystems where geomorphic and ecological stability is driven by interactions between the flow of water, vegetation growth and sediment transport. Although the sensitivity of terrestrial and deep marine carbon pools to climate change has been studied for decades, there is little understanding of how coastal carbon accumulation rates will change and potentially feed back on climate. Here we develop a numerical model of salt marsh evolution, informed by recent measurements of productivity and decomposition, and demonstrate that competition between mineral sediment deposition and organic-matter accumulation determines the net impact of climate change on carbon accumulation in intertidal wetlands. We find that the direct impact of warming on soil carbon accumulation rates is more subtle than the impact of warming-driven sea level rise, although the impact of warming increases with increasing rates of sea level rise. Our simulations suggest that the net impact of climate change will be to increase carbon burial rates in the first half of the twenty-first century, but that carbon–climate feedbacks are likely to diminish over time.


Geology | 2011

Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates

Matthew L. Kirwan; A. Brad Murray; Jeffrey P. Donnelly; D. Reide Corbett

Fluctuations in sea-level rise rates are thought to dominate the formation and evolution of coastal wetlands. Here we demonstrate a contrasting scenario in which land-use–related changes in sediment delivery rates drive the formation of expansive marshland, and vegetation feedbacks maintain their morphology despite recent sediment supply reduction. Stratigraphic analysis and radiocarbon dating in the Plum Island Estuary (Massachusetts, United States) suggest that salt marshes expanded rapidly during the eighteenth and nineteenth centuries due to increased rates of sediment delivery following deforestation associated with European settlement. Numerical modeling coupled with the stratigraphic observations suggests that existing marshland could survive, but not form under the low suspended sediment concentrations observed in the estuary today. These results suggest that many of the expansive marshes that characterize the modern North American coast are metastable relicts of high nineteenth century sediment delivery rates, and that recent observations of degradation may represent a slow return to pre-settlement marsh extent. In contrast to ecosystem management practices in which restoring pre-anthropogenic conditions is seen as a way to increase ecosystem services, our results suggest that widespread efforts to restore valuable coastal wetlands actually prevent some systems from returning to a natural state.


Science | 2015

Building land with a rising sea

S. Temmerman; Matthew L. Kirwan

Cost-efficient nature-based solutions can help to sustain coastal societies [Also see Report by Tessler et al.] Coastal lowlands are increasingly exposed to flood risks from sea-level rise and extreme weather events (1). Megacities like Shanghai, London, New York, and Bangkok that lie in vast river deltas are particularly vulnerable. Dramatic flood disasters include the Indian Ocean tsunami in 2004, Hurricane Katrina in New Orleans in 2005, Hurricane Sandy in New York in 2012, and Typhoon Haiyan in the Philippines in 2013. Managing the risks of such disasters requires investments in short-term emergency response and long-term flood protection (2), including nature- or ecosystem-based engineering (3, 4). On page 638 of this issue, Tessler et al. (5) show that sealevel rise, increasing climate extremes, population growth, and human-induced sinking of deltas threaten the sustainability of many major deltas around the world.


Geology | 2007

Summit erosion rates deduced from 10Be: Implications for relief production in the central Appalachians

Gregory S. Hancock; Matthew L. Kirwan

We have measured erosion rates using 10 Be from bare-bedrock surfaces exposed at high elevations at Dolly Sods, West Virginia, a classic Appalachian paleoperiglacial plateau. The mean erosion rate from nine samples is 5.7 m/m.y., signifi cantly lower than previously estimated periglacial erosion rates in this region. Measured bare-bedrock erosion rates likely represent the rate at which the highest portions of this broad upland are being lowered. Fluvial incision rates measured in the region over similar time scales are ≥2 times faster, suggesting relief is increasing in this portion of the Appalachians. This observation of increasing relief is inconsistent with prior work suggesting that the central Appalachian landscape is in dynamic equilibrium or currently decreasing in relief. We hypothesize that late Cenozoic climate change has accelerated fl uvial incision rates, creating a disequilibrium landscape with growing relief with hillslopes undergoing adjustment to increased fl uvial incision rates.


Geophysical Research Letters | 2015

Sediment transport-based metrics of wetland stability

Neil K. Ganju; Matthew L. Kirwan; Patrick J. Dickhudt; Glenn R. Guntenspergen; Donald R. Cahoon; Kevin D. Kroeger

Despite the importance of sediment availability on wetland stability, vulnerability assessments seldom consider spatiotemporal variability of sediment transport. Models predict that the maximum rate of sea level rise a marsh can survive is proportional to suspended sediment concentration (SSC) and accretion. In contrast, we find that SSC and accretion are higher in an unstable marsh than in an adjacent stable marsh, suggesting that these metrics cannot describe wetland vulnerability. Therefore, we propose the flood/ebb SSC differential and organic-inorganic suspended sediment ratio as better vulnerability metrics. The unstable marsh favors sediment export (18 mg L−1 higher on ebb tides), while the stable marsh imports sediment (12 mg L−1 higher on flood tides). The organic-inorganic SSC ratio is 84% higher in the unstable marsh, and stable isotopes indicate a source consistent with marsh-derived material. These simple metrics scale with sediment fluxes, integrate spatiotemporal variability, and indicate sediment sources.

Collaboration


Dive into the Matthew L. Kirwan's collaboration.

Top Co-Authors

Avatar

Glenn R. Guntenspergen

Patuxent Wildlife Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Walters

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil K. Ganju

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James T. Morris

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge