Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil K. Ganju is active.

Publication


Featured researches published by Neil K. Ganju.


Proceedings of the National Academy of Sciences of the United States of America | 2016

A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

Nicoletta Leonardi; Neil K. Ganju; Sergio Fagherazzi

Significance In recent years, there has been a flurry of restoration projects aimed at mitigating the impact of coastal storms using salt marshes and vegetated surfaces (called “living shorelines”). Based on a large dataset of salt marsh erosion and wave measurements collected all around the world, we find that erosion rates of marsh boundaries and incident wave energy collapse into a unique linear relationship. Our result clearly shows that long-term salt marsh deterioration is dictated by average wave conditions, and it is, therefore, predictable. Violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. This result is of high value for coastal restoration projects and the use of living shorelines to mitigate storms effect. Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.


Estuaries | 2005

Suspended Sediment Fluxes in a Tidal Wetland: Measurement, Controlling Factors, and Error Analysis

Neil K. Ganju; David H. Schoellhamer; Brian A. Bergamaschi

Suspended sediment fluxes to and from tidal wetlands are of increasing concern because of habitat restoration efforts, wetland sustainability as sea level rises, and potential contaminant accumulation. We measured water and sediment fluxes through two channels on Browns Island, at the landward end of San Francisco Bay, United States, to determine the factors that control sediment fluxes on and off the island. In situ instrumentation was deployed between October 10 and November 13, 2003. Acoustic Doppler current profilers and the index velocity method were employed to calculate water fluxes. Suspended sediment concentrations (SSC) were determined with optical sensors and cross-sectional water sampling. All procedures were analyzed for their contribution to total error in the flux measurement. The inability to close the water balance and determination of constituent concentration were identified as the main sources of error; total error was 27% for net sediment flux. The water budget for the island was computed, with an unaccounted input of 0.20 m3s−1 (22% of mean inflow), after considering channel flow, change in water storage, evapotranspiration, and precipitation. The net imbalance may be a combination of groundwater seepage, overland flow, and flow through minor channels. Change of island water storage, caused by local variations in water surface elevation, dominated the tidally averaged water flux. These variations were mainly caused by wind and barometric pressure change, which alter regional water levels throughout the Sacramento-San Joaquin River Delta. Peak instantaneous ebb flow was 35% greater than peak flood flow, indicating an ebbdominant system, though dominance varied with the spring-neap cycle. SSC were controlled by wind-wave resuspension adjacent to the island and local tidal currents that mobilized sediment from the channel bed. During neap tides sediment was imported onto the island but during spring tides sediment was exported because the main channel became ebb dominant. Over the 34-d monitoring period 14,000 kg of suspended sediment were imported through the two channels. The water imbalance may affect the sediment balance if the unmeasured water transport pathways are capable of transporting large amounts of sediment. We estimate a maximum of 2,800 kg of sediment may have been exported through unmeasured pathways, giving a minimum ent import of 11,200 kg. Sediment flux measurements provide insight on tidal to fortnightly marsh sedimentation processes, especially in complex systems where sedimentation is spatially and temporally variable.


Geophysical Research Letters | 2015

Sediment transport-based metrics of wetland stability

Neil K. Ganju; Matthew L. Kirwan; Patrick J. Dickhudt; Glenn R. Guntenspergen; Donald R. Cahoon; Kevin D. Kroeger

Despite the importance of sediment availability on wetland stability, vulnerability assessments seldom consider spatiotemporal variability of sediment transport. Models predict that the maximum rate of sea level rise a marsh can survive is proportional to suspended sediment concentration (SSC) and accretion. In contrast, we find that SSC and accretion are higher in an unstable marsh than in an adjacent stable marsh, suggesting that these metrics cannot describe wetland vulnerability. Therefore, we propose the flood/ebb SSC differential and organic-inorganic suspended sediment ratio as better vulnerability metrics. The unstable marsh favors sediment export (18 mg L−1 higher on ebb tides), while the stable marsh imports sediment (12 mg L−1 higher on flood tides). The organic-inorganic SSC ratio is 84% higher in the unstable marsh, and stable isotopes indicate a source consistent with marsh-derived material. These simple metrics scale with sediment fluxes, integrate spatiotemporal variability, and indicate sediment sources.


Environmental Toxicology and Chemistry | 2009

Mercury concentrations and loads in a large river system tributary to San Francisco Bay, California, USA†

Nicole David; Lester J. McKee; Frank J. Black; A. Russell Flegal; Christopher H. Conaway; David H. Schoellhamer; Neil K. Ganju

In order to estimate total mercury (HgT) loads entering San Francisco Bay, U.S.A., via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n=78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 +/- 22 kg (n=5) in water year (WY) 2002 to 470 +/- 170 kg (n=25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay.


Hydraulic Measurements and Experimental Methods Specialty Conference (HMEM) 2002 | 2002

A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

Jeffrey W. Gartner; Neil K. Ganju

Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic “ringing” to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments 4 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.


Proceedings in Marine Science | 2007

Constancy of the relation between floc size and density in San Francisco Bay

Neil K. Ganju; David H. Schoellhamer; M.C. Murrell; Jeffrey W. Gartner; Scott A. Wright

The size and density of fine-sediment aggregates, or flocs, govern their transport and depositional properties. While the mass and volume concentrations of flocs can be measured directly or by optical methods, they must be determined simultaneously to gain an accurate density measurement. Results are presented from a tidal cycle study in San Francisco Bay, where mass concentration was determined directly, and volume concentration was measured in 32 logarithmically spaced size bins by laser-diffraction methods. The relation between floc size and density is investigated assuming a constant primary particle size and fractal floc dimension. This relation is validated with measurements from several sites throughout San Francisco Bay. The constancy of this relation implies a uniform primary particle size throughout the Bay, as well as uniform aggregation/disaggregation mechanisms (which modify fractal dimension). The exception to the relation is identified during near-bed measurements, when advected flocs mix with recently resuspended flocs from the bed, which typically have a higher fractal dimension than suspended flocs. The constant relation for suspended flocs simplifies monitoring and numerical modeling of suspended sediment in San Francisco Bay.


Nature Communications | 2017

Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes

Neil K. Ganju; Zafer Defne; Matthew L. Kirwan; Sergio Fagherazzi; Andrea D'Alpaos; Luca Carniello

Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability.


Geophysical Research Letters | 2014

Water level response in back‐barrier bays unchanged following Hurricane Sandy

Alfredo L. Aretxabaleta; Bradford Butman; Neil K. Ganju

On 28–30 October 2012, Hurricane Sandy caused severe flooding along portions of the northeast coast of the United States and cut new inlets across barrier islands in New Jersey and New York. About 30% of the 20 highest daily maximum water levels observed between 2007 and 2013 in Barnegat and Great South Bay occurred in 5 months following Hurricane Sandy. Hurricane Sandy provided a rare opportunity to determine whether extreme events alter systems protected by barrier islands, leaving the mainland more vulnerable to flooding. Comparisons between water levels before and after Hurricane Sandy at bay stations and an offshore station show no significant differences in the transfer of sea level fluctuations from offshore to either bay following Sandy. The post-Hurricane Sandy bay high water levels reflected offshore sea levels caused by winter storms, not by barrier island breaching or geomorphic changes within the bays.


Estuaries and Coasts | 2016

Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

Neil K. Ganju; Mark J. Brush; Brenda Rashleigh; Alfredo L. Aretxabaleta; Pilar del Barrio; Jason S. Grear; Lora A. Harris; Samuel J. Lake; Grant McCardell; James O’Donnell; David K. Ralston; Richard P. Signell; Jeremy M. Testa; Jamie M.P. Vaudrey

Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.


Journal of Physical Oceanography | 2013

The Spatial Structure of Tidal and Mean Circulation over the Inner Shelf South of Martha's Vineyard, Massachusetts

Anthony R. Kirincich; Steven J. Lentz; J. Thomas Farrar; Neil K. Ganju

AbstractThe spatial structure of the tidal and background circulation over the inner shelf south of Marthas Vineyard, Massachusetts, was investigated using observations from a high-resolution, high-frequency coastal radar system, paired with satellite SSTs and in situ ADCP velocities. Maximum tidal velocities for the dominant semidiurnal constituent increased from 5 to 35 cm s−1 over the 20-km-wide domain with phase variations up to 60°. A northeastward jet along the eastern edge and a recirculation region inshore dominated the annually averaged surface currents, along with a separate along-shelf jet offshore. Owing in part to this variable circulation, the spatial structure of seasonal SST anomalies had implications for the local heat balance. Cooling owing to the advective heat flux divergence was large enough to offset more than half of the seasonal heat gain owing to surface heat flux. Tidal stresses were the largest terms in the mean along- and across-shelf momentum equations in the area of the reci...

Collaboration


Dive into the Neil K. Ganju's collaboration.

Top Co-Authors

Avatar

David H. Schoellhamer

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Alfredo L. Aretxabaleta

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Zafer Defne

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Patrick J. Dickhudt

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Alexis Beudin

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Ellyn T. Montgomery

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Steven E. Suttles

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glenn R. Guntenspergen

Patuxent Wildlife Research Center

View shared research outputs
Top Co-Authors

Avatar

Gregory G. Shellenbarger

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge