Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew M. Dahm is active.

Publication


Featured researches published by Matthew M. Dahm.


Annals of Occupational Hygiene | 2013

Occupational Exposure Assessment in Carbon Nanotube and Nanofiber Primary and Secondary Manufacturers: Mobile Direct-Reading Sampling

Matthew M. Dahm; Douglas E. Evans; Mary K. Schubauer-Berigan; M. Eileen Birch; James A. Deddens

UNLABELLED RESEARCH SIGNIFICANCE: Toxicological evidence suggests the potential for a wide range of health effects from exposure to carbon nanotubes (CNTs) and carbon nanofibers (CNFs). To date, there has been much focus on the use of direct-reading instruments (DRIs) to assess multiple airborne exposure metrics for potential exposures to CNTs and CNFs due to their ease of use and ability to provide instantaneous results. Still, uncertainty exists in the usefulness and interpretation of the data. To address this gap, air-monitoring was conducted at six sites identified as CNT and CNF manufacturers or users and results were compared with filter-based metrics. METHODS Particle number, respirable mass, and active surface area concentrations were monitored with a condensation particle counter, a photometer, and a diffusion charger, respectively. The instruments were placed on a mobile cart and used as area monitors in parallel with filter-based elemental carbon (EC) and electron microscopy samples. Repeat samples were collected on consecutive days, when possible, during the same processes. All instruments in this study are portable and routinely used for industrial hygiene sampling. RESULTS Differences were not observed among the various sampled processes compared with concurrent indoor or outdoor background samples while examining the different DRI exposure metrics. Such data were also inconsistent with results for filter-based samples collected concurrently at the same sites [Dahm MM, Evans DE, Schubauer-Berigan MK et al. (2012) Occupational exposure assessment in CNT and nanofiber primary and secondary manufacturers. Ann Occup Hyg; 56: 542-56]. Significant variability was seen between these processes as well as the indoor and outdoor backgrounds. However, no clear pattern emerged linking the DRI results to the EC or the microscopy data (CNT and CNF structure counts). CONCLUSIONS Overall, no consistent trends were seen among similar processes at the various sites. The DRI instruments employed were limited in their usefulness in assessing and quantifying potential exposures at the sampled sites but were helpful for hypothesis generation, control technology evaluations, and other air quality issues. The DRIs employed are nonspecific, aerosol monitors, and, therefore, subject to interferences. As such, it is necessary to collect samples for analysis by more selective, time-integrated, laboratory-based methods to confirm and quantify exposures.


Particle and Fibre Toxicology | 2013

Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology

Aaron Erdely; Matthew M. Dahm; Bean T. Chen; Patti C. Zeidler-Erdely; Joseph E. Fernback; M. Eileen Birch; Douglas E. Evans; Michael L. Kashon; James A. Deddens; Tracy Hulderman; Suzan Bilgesu; Lori Battelli; Diane Schwegler-Berry; Howard Leonard; Walter McKinney; David G. Frazer; James M. Antonini; Dale W. Porter; Vincent Castranova; Mary K. Schubauer-Berigan

BackgroundDosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice.ResultsUpon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 μg/m3 (geometric mean 4.21 μg/m3) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 μg/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose.ConclusionThese findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level.


Occupational and Environmental Medicine | 2014

Mortality and cancer incidence in a pooled cohort of US firefighters from San Francisco, Chicago and Philadelphia (1950-2009)

Robert D. Daniels; Travis L. Kubale; James H. Yiin; Matthew M. Dahm; Thomas Hales; Dalsu Baris; Shelia Hoar Zahm; James J. Beaumont; Kathleen M. Waters; Lynne E. Pinkerton

Objectives To examine mortality patterns and cancer incidence in a pooled cohort of 29 993 US career firefighters employed since 1950 and followed through 2009. Methods Mortality and cancer incidence were evaluated by life table methods with the US population referent. Standardised mortality (SMR) and incidence (SIR) ratios were determined for 92 causes of death and 41 cancer incidence groupings. Analyses focused on 15 outcomes of a priori interest. Sensitivity analyses were conducted to examine the potential for significant bias. Results Person-years at risk totalled 858 938 and 403 152 for mortality and incidence analyses, respectively. All-cause mortality was at expectation (SMR=0.99, 95% CI 0.97 to 1.01, n=12 028). There was excess cancer mortality (SMR=1.14, 95% CI 1.10 to 1.18, n=3285) and incidence (SIR=1.09, 95% CI 1.06 to 1.12, n=4461) comprised mainly of digestive (SMR=1.26, 95% CI 1.18 to 1.34, n=928; SIR=1.17, 95% CI 1.10 to 1.25, n=930) and respiratory (SMR=1.10, 95% CI 1.04 to 1.17, n=1096; SIR=1.16, 95% CI 1.08 to 1.24, n=813) cancers. Consistent with previous reports, modest elevations were observed in several solid cancers; however, evidence of excess lymphatic or haematopoietic cancers was lacking. This study is the first to report excess malignant mesothelioma (SMR=2.00, 95% CI 1.03 to 3.49, n=12; SIR=2.29, 95% CI 1.60 to 3.19, n=35) among US firefighters. Results appeared robust under differing assumptions and analytic techniques. Conclusions Our results provide evidence of a relation between firefighting and cancer. The new finding of excess malignant mesothelioma is noteworthy, given that asbestos exposure is a known hazard of firefighting.


American Journal of Industrial Medicine | 2012

Focused actions to protect carbon nanotube workers

Paul A. Schulte; Eileen D. Kuempel; Ralph D. Zumwalde; Charles L. Geraci; Mary K. Schubauer-Berigan; Vincent Castranova; Laura Hodson; Vladimir Murashov; Matthew M. Dahm; Michael J. Ellenbecker

There is still uncertainty about the potential health hazards of carbon nanotubes (CNTs) particularly involving carcinogenicity. However, the evidence is growing that some types of CNTs and nanofibers may have carcinogenic properties. The critical question is that while the carcinogenic potential of CNTs is being further investigated, what steps should be taken to protect workers who face exposure to CNTs, current and future, if CNTs are ultimately found to be carcinogenic? This paper addresses five areas to help focus action to protect workers: (i) review of the current evidence on the carcinogenic potential of CNTs; (ii) role of physical and chemical properties related to cancer development; (iii) CNT doses associated with genotoxicity in vitro and in vivo; (iv) workplace exposures to CNT; and (v) specific risk management actions needed to protect workers.


Annals of Occupational Hygiene | 2015

Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits

Matthew M. Dahm; Mary K. Schubauer-Berigan; Douglas E. Evans; M. Eileen Birch; Joseph E. Fernback; James A. Deddens

Recent evidence has suggested the potential for wide-ranging health effects that could result from exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF). In response, the National Institute for Occupational Safety and Health (NIOSH) set a recommended exposure limit (REL) for CNT and CNF: 1 µg m(-3) as an 8-h time weighted average (TWA) of elemental carbon (EC) for the respirable size fraction. The purpose of this study was to conduct an industrywide exposure assessment among US CNT and CNF manufacturers and users. Fourteen total sites were visited to assess exposures to CNT (13 sites) and CNF (1 site). Personal breathing zone (PBZ) and area samples were collected for both the inhalable and respirable mass concentration of EC, using NIOSH Method 5040. Inhalable PBZ samples were collected at nine sites while at the remaining five sites both respirable and inhalable PBZ samples were collected side-by-side. Transmission electron microscopy (TEM) PBZ and area samples were also collected at the inhalable size fraction and analyzed to quantify and size CNT and CNF agglomerate and fibrous exposures. Respirable EC PBZ concentrations ranged from 0.02 to 2.94 µg m(-3) with a geometric mean (GM) of 0.34 µg m(-3) and an 8-h TWA of 0.16 µg m(-3). PBZ samples at the inhalable size fraction for EC ranged from 0.01 to 79.57 µg m(-3) with a GM of 1.21 µg m(-3). PBZ samples analyzed by TEM showed concentrations ranging from 0.0001 to 1.613 CNT or CNF-structures per cm(3) with a GM of 0.008 and an 8-h TWA concentration of 0.003. The most common CNT structure sizes were found to be larger agglomerates in the 2-5 µm range as well as agglomerates >5 µm. A statistically significant correlation was observed between the inhalable samples for the mass of EC and structure counts by TEM (Spearman ρ = 0.39, P < 0.0001). Overall, EC PBZ and area TWA samples were below the NIOSH REL (96% were <1 μg m(-3) at the respirable size fraction), while 30% of the inhalable PBZ EC samples were found to be >1 μg m(-3). Until more information is known about health effects associated with larger agglomerates, it seems prudent to assess worker exposure to airborne CNT and CNF materials by monitoring EC at both the respirable and inhalable size fractions. Concurrent TEM samples should be collected to confirm the presence of CNT and CNF.


Journal of Occupational and Environmental Medicine | 2011

Engineered carbonaceous nanomaterials manufacturers in the United States: workforce size, characteristics, and feasibility of epidemiologic studies.

Mary K. Schubauer-Berigan; Matthew M. Dahm; Marianne S. Yencken

Objective: Toxicology studies suggest that carbon nanotube (CNT) exposures may cause adverse pulmonary effects. This study identified all US engineered carbonaceous nanomaterial (ECN) manufacturers, determined workforce size and growth, and characterized the materials produced to determine the feasibility of occupational ECN exposure studies. Methods: Eligible companies were identified; information was assembled on the companies and nanomaterials they produced; and the workforce size, location, and growth were estimated. Results: Sixty-one companies manufacturing ECN in the United States were identified. These companies employed at least 620 workers; workforce growth was projected at 15% to 17% annually. Most companies produced or used CNT. Half the eligible companies provided information about material dimensions, quantities, synthesis methods, and worker exposure reduction strategies. Conclusions: Industrywide exposure assessment studies appear feasible; however, cohort studies are likely infeasible because of the small, scattered workforce.


Journal of Occupational and Environmental Medicine | 2011

Exposure control strategies in the carbonaceous nanomaterial industry.

Matthew M. Dahm; Marianne S. Yencken; Mary K. Schubauer-Berigan

Objective: Little is known about exposure control strategies currently being implemented to minimize exposures during the production or use of nanomaterials in the United States. Our goal was to estimate types and quantities of materials used and factors related to workplace exposure reductions among companies manufacturing or using engineered carbonaceous nanomaterials (ECNs). Methods: Information was collected through phone surveys on work practices and exposure control strategies from 30 participating producers and users of ECN. The participants were classified into three groups for further examination. Results: We report here the use of exposure control strategies. Observed patterns suggest that large-scale manufacturers report greater use of nanospecific exposure control strategies particularly for respiratory protection. Conclusion Workplaces producing or using ECN generally report using engineering and administrative controls as well as personal protective equipment to control workplace employee exposure.


Occupational and Environmental Medicine | 2015

Exposure–response relationships for select cancer and non-cancer health outcomes in a cohort of US firefighters from San Francisco, Chicago and Philadelphia (1950–2009)

Robert D. Daniels; Stephen J. Bertke; Matthew M. Dahm; James H. Yiin; Travis L. Kubale; Thomas Hales; Dalsu Baris; Shelia Hoar Zahm; James J. Beaumont; Kathleen M. Waters; Lynne E. Pinkerton

Objectives To examine exposure–response relationships between surrogates of firefighting exposure and select outcomes among previously studied US career firefighters. Methods Eight cancer and four non-cancer outcomes were examined using conditional logistic regression. Incidence density sampling was used to match each case to 200 controls on attained age. Days accrued in firefighting assignments (exposed-days), run totals (fire-runs) and run times (fire-hours) were used as exposure surrogates. HRs comparing 75th and 25th centiles of lagged cumulative exposures were calculated using loglinear, linear, log-quadratic, power and restricted cubic spline general relative risk models. Piecewise constant models were used to examine risk differences by time since exposure, age at exposure and calendar period. Results Among 19 309 male firefighters eligible for the study, there were 1333 cancer deaths and 2609 cancer incidence cases. Significant positive associations between fire-hours and lung cancer mortality and incidence were evident. A similar relation between leukaemia mortality and fire-runs was also found. The lung cancer associations were nearly linear in cumulative exposure, while the association with leukaemia mortality was attenuated at higher exposure levels and greater for recent exposures. Significant negative associations were evident for the exposure surrogates and colorectal and prostate cancers, suggesting a healthy worker survivor effect possibly enhanced by medical screening. Conclusions Lung cancer and leukaemia mortality risks were modestly increasing with firefighter exposures. These findings add to evidence of a causal association between firefighting and cancer. Nevertheless, small effects merit cautious interpretation. We plan to continue to follow the occurrence of disease and injury in this cohort.


Journal of Occupational and Environmental Hygiene | 2016

Refinement of the Nanoparticle Emission Assessment Technique into the Nanomaterial Exposure Assessment Technique (NEAT 2.0)

Adrienne Eastlake; Catherine Beaucham; Kenneth Martinez; Matthew M. Dahm; Christopher Sparks; Laura Hodson; Charles L. Geraci

ABSTRACT Engineered nanomaterial emission and exposure characterization studies have been completed at more than 60 different facilities by the National Institute for Occupational Safety and Health (NIOSH). These experiences have provided NIOSH the opportunity to refine an earlier published technique, the Nanoparticle Emission Assessment Technique (NEAT 1.0), into a more comprehensive technique for assessing worker and workplace exposures to engineered nanomaterials. This change is reflected in the new name Nanomaterial Exposure Assessment Technique (NEAT 2.0) which distinguishes it from NEAT 1.0. NEAT 2.0 places a stronger emphasis on time-integrated, filter-based sampling (i.e., elemental mass analysis and particle morphology) in the workers breathing zone (full shift and task specific) and area samples to develop job exposure matrices. NEAT 2.0 includes a comprehensive assessment of emissions at processes and job tasks, using direct-reading instruments (i.e., particle counters) in data-logging mode to better understand peak emission periods. Evaluation of worker practices, ventilation efficacy, and other engineering exposure control systems and risk management strategies serve to allow for a comprehensive exposure assessment.


ACS Nano | 2017

In Vivo Toxicity Assessment of Occupational Components of the Carbon Nanotube Life Cycle To Provide Context to Potential Health Effects

Lindsey Bishop; Lorenzo Cena; Marlene Orandle; Naveena Yanamala; Matthew M. Dahm; M. Eileen Birch; Douglas E. Evans; Vamsi K. Kodali; Tracy Eye; Lori Battelli; Patti C. Zeidler-Erdely; Gary S. Casuccio; Kristin L. Bunker; Jason S. Lupoi; Traci L. Lersch; Aleksandr B. Stefaniak; Tina Sager; Aliakbar Afshari; Diane Schwegler-Berry; Sherri Friend; Jonathan Kang; Katelyn J. Siegrist; Constance A. Mitchell; David T. Lowry; Michael L. Kashon; Robert R. Mercer; Charles L. Geraci; Mary K. Schubauer-Berigan; Linda M. Sargent; Aaron Erdely

Pulmonary toxicity studies on carbon nanotubes focus primarily on as-produced materials and rarely are guided by a life cycle perspective or integration with exposure assessment. Understanding toxicity beyond the as-produced, or pure native material, is critical, due to modifications needed to overcome barriers to commercialization of applications. In the first series of studies, the toxicity of as-produced carbon nanotubes and their polymer-coated counterparts was evaluated in reference to exposure assessment, material characterization, and stability of the polymer coating in biological fluids. The second series of studies examined the toxicity of aerosols generated from sanding polymer-coated carbon-nanotube-embedded or neat composites. Postproduction modification by polymer coating did not enhance pulmonary injury, inflammation, and pathology or in vitro genotoxicity of as-produced carbon nanotubes, and for a particular coating, toxicity was significantly attenuated. The aerosols generated from sanding composites embedded with polymer-coated carbon nanotubes contained no evidence of free nanotubes. The percent weight incorporation of polymer-coated carbon nanotubes, 0.15% or 3% by mass, and composite matrix utilized altered the particle size distribution and, in certain circumstances, influenced acute in vivo toxicity. Our study provides perspective that, while the number of workers and consumers increases along the life cycle, toxicity and/or potential for exposure to the as-produced material may greatly diminish.

Collaboration


Dive into the Matthew M. Dahm's collaboration.

Top Co-Authors

Avatar

Mary K. Schubauer-Berigan

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Douglas E. Evans

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

M. Eileen Birch

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Aaron Erdely

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Joseph E. Fernback

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Bertke

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Charles L. Geraci

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Robert R. Mercer

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

John D. Beard

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Laura Hodson

National Institute for Occupational Safety and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge