Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Matlock is active.

Publication


Featured researches published by Matthew Matlock.


Nature Genetics | 2017

CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer

Malachi Griffith; Nicholas C. Spies; Kilannin Krysiak; Joshua F. McMichael; Adam Coffman; Arpad M. Danos; Benjamin J. Ainscough; Cody Ramirez; Damian Tobias Rieke; Lynzey Kujan; Erica K. Barnell; Alex H. Wagner; Zachary L. Skidmore; Amber Wollam; Connor Liu; Martin R. Jones; Rachel L. Bilski; Robert Lesurf; Yan Yang Feng; Nakul M. Shah; Melika Bonakdar; Lee Trani; Matthew Matlock; Avinash Ramu; Katie M. Campbell; Gregory Spies; Aaron Graubert; Karthik Gangavarapu; James M. Eldred; David E. Larson

CIViC is an expert-crowdsourced knowledgebase for Clinical Interpretation of Variants in Cancer describing the therapeutic, prognostic, diagnostic and predisposing relevance of inherited and somatic variants of all types. CIViC is committed to open-source code, open-access content, public application programming interfaces (APIs) and provenance of supporting evidence to allow for the transparent creation of current and accurate variant interpretations for use in cancer precision medicine.


Blood | 2017

Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma

Kilannin Krysiak; Felicia Gomez; Brian S. White; Matthew Matlock; Christopher A. Miller; Lee Trani; Catrina C. Fronick; Robert S. Fulton; Friederike Kreisel; Amanda F. Cashen; Kenneth R. Carson; Melissa M. Berrien-Elliott; Nancy L. Bartlett; Malachi Griffith; Obi L. Griffith; Todd A. Fehniger

Follicular lymphoma (FL) is the most common form of indolent non-Hodgkin lymphoma, yet it remains only partially characterized at the genomic level. To improve our understanding of the genetic underpinnings of this incurable and clinically heterogeneous disease, whole-exome sequencing was performed on tumor/normal pairs from a discovery cohort of 24 patients with FL. Using these data and mutations identified in other B-cell malignancies, 1716 genes were sequenced in 113 FL tumor samples from 105 primarily treatment-naive individuals. We identified 39 genes that were mutated significantly above background mutation rates. CREBBP mutations were associated with inferior PFS. In contrast, mutations in previously unreported HVCN1, a voltage-gated proton channel-encoding gene and B-cell receptor signaling modulator, were associated with improved PFS. In total, 47 (44.8%) patients harbor mutations in the interconnected B-cell receptor (BCR) and CXCR4 signaling pathways. Histone gene mutations were more frequent than previously reported (identified in 43.8% of patients) and often co-occurred (17.1% of patients). A novel, recurrent hotspot was identified at a posttranslationally modified residue in the histone H2B family. This study expands the number of mutated genes described in several known signaling pathways and complexes involved in lymphoma pathogenesis (BCR, Notch, SWitch/sucrose nonfermentable (SWI/SNF), vacuolar ATPases) and identified novel recurrent mutations (EGR1/2, POU2AF1, BTK, ZNF608, HVCN1) that require further investigation in the context of FL biology, prognosis, and treatment.


Nucleic Acids Research | 2015

ProteomeScout: a repository and analysis resource for post-translational modifications and proteins

Matthew Matlock; Alex S. Holehouse; Kristen M. Naegle

ProteomeScout (https://proteomescout.wustl.edu) is a resource for the study of proteins and their post-translational modifications (PTMs) consisting of a database of PTMs, a repository for experimental data, an analysis suite for PTM experiments, and a tool for visualizing the relationships between complex protein annotations. The PTM database is a compendium of public PTM data, coupled with user-uploaded experimental data. ProteomeScout provides analysis tools for experimental datasets, including summary views and subset selection, which can identify relationships within subsets of data by testing for statistically significant enrichment of protein annotations. Protein annotations are incorporated in the ProteomeScout database from external resources and include terms such as Gene Ontology annotations, domains, secondary structure and non-synonymous polymorphisms. These annotations are available in the database download, in the analysis tools and in the protein viewer. The protein viewer allows for the simultaneous visualization of annotations in an interactive web graphic, which can be exported in Scalable Vector Graphics (SVG) format. Finally, quantitative data measurements associated with public experiments are also easily viewable within protein records, allowing researchers to see how PTMs change across different contexts. ProteomeScout should prove useful for protein researchers and should benefit the proteomics community by providing a stable repository for PTM experiments.


Bioinformatics | 2015

XenoSite server: a web-available site of metabolism prediction tool

Matthew Matlock; Tyler B. Hughes; Sanjay Joshua Swamidass

UNLABELLED Cytochrome P450 enzymes (P450s) are metabolic enzymes that process the majority of FDA-approved, small-molecule drugs. Understanding how these enzymes modify molecule structure is key to the development of safe, effective drugs. XenoSite server is an online implementation of the XenoSite, a recently published computational model for P450 metabolism. XenoSite predicts which atomic sites of a molecule--sites of metabolism (SOMs)--are modified by P450s. XenoSite server accepts input in common chemical file formats including SDF and SMILES and provides tools for visualizing the likelihood that each atomic site is a site of metabolism for a variety of important P450s, as well as a flat file download of SOM predictions. AVAILABILITY AND IMPLEMENTATION XenoSite server is available at http://swami.wustl.edu/xenosite.


Journal of Biomolecular Screening | 2014

Combined Analysis of Phenotypic and Target-Based Screening in Assay Networks

S. Joshua Swamidass; Constantino N. Schillebeeckx; Matthew Matlock; Mark R. Hurle; Pankaj Agarwal

Small-molecule screens are an integral part of drug discovery. Public domain data in PubChem alone represent more than 158 million measurements, 1.2 million molecules, and 4300 assays. We conducted a global analysis of these data, building a network of assays and connecting the assays if they shared nonpromiscuous active molecules. This network spans both phenotypic and target-based screens, recapitulates known biology, and identifies new polypharmacology. Phenotypic screens are extremely important for drug discovery, contributing to the discovery of a large proportion of new drugs. Connections between phenotypic and biochemical, target-based screens can suggest strategies for repurposing both small-molecule and biologic drugs. For example, a screen for molecules that prevent cell death from a mutated version of superoxide-dismutase is linked with ALOX15. This connection suggests a therapeutic role for ALOX15 inhibitors in amyotrophic lateral sclerosis. An interactive version of the network is available online (http://swami.wustl.edu/flow/assay_network.html).


Bioinformatics | 2013

Scaffold Network Generator: A Tool for Mining Molecular Structures

Matthew Matlock; Jed Zaretzki; S. Joshua Swamidass

SUMMARY Scaffold network generator (SNG) is an open-source command-line utility that computes the hierarchical network of scaffolds that define a large set of input molecules. Scaffold networks are useful for visualizing, analysing and understanding the chemical data that is increasingly available through large public repositories like PubChem. For example, some groups have used scaffold networks to identify missed-actives in high-throughput screens of small molecules with bioassays. Substantially improving on existing software, SNG is robust enough to work on millions of molecules at a time with a simple command-line interface. AVAILABILITY AND IMPLEMENTATION SNG is accessible at http://swami.wustl.edu/sng


bioRxiv | 2016

CIViC: A knowledgebase for expert-crowdsourcing the clinical interpretation of variants in cancer.

Malachi Griffith; Nicholas C. Spies; Kilannin Krysiak; Adam Coffman; Joshua F. McMichael; Benjamin J. Ainscough; Damian Tobias Rieke; Arpad M. Danos; Lynzey Kujan; Cody Ramirez; Alex H. Wagner; Zachary L. Skidmore; Connor Liu; Martin R. Jones; Rachel L. Bilski; Robert Lesurf; Erica K. Barnell; Nakul M. Shah; Melika Bonakdar; Lee Trani; Matthew Matlock; Avinash Ramu; Katie M. Campbell; Gregory Spies; Aaron Graubert; Karthik Gangavarapu; James M. Eldred; David E. Larson; Jason Walker; Benjamin M. Good

CIViC is an expert crowdsourced knowledgebase for Clinical Interpretation of Variants in Cancer (www.civicdb.org) describing the therapeutic, prognostic, and diagnostic relevance of inherited and somatic variants of all types. CIViC is committed to open source code, open access content, public application programming interfaces (APIs), and provenance of supporting evidence to allow for the transparent creation of current and accurate variant interpretations for use in cancer precision medicine.


ACS central science | 2018

Learning a Local-Variable Model of Aromatic and Conjugated Systems

Matthew Matlock; Na Le Dang; S. Joshua Swamidass

A collection of new approaches to building and training neural networks, collectively referred to as deep learning, are attracting attention in theoretical chemistry. Several groups aim to replace computationally expensive ab initio quantum mechanics calculations with learned estimators. This raises questions about the representability of complex quantum chemical systems with neural networks. Can local-variable models efficiently approximate nonlocal quantum chemical features? Here, we find that convolutional architectures, those that only aggregate information locally, cannot efficiently represent aromaticity and conjugation in large systems. They cannot represent long-range nonlocality known to be important in quantum chemistry. This study uses aromatic and conjugated systems computed from molecule graphs, though reproducing quantum simulations is the ultimate goal. This task, by definition, is both computable and known to be important to chemistry. The failure of convolutional architectures on this focused task calls into question their use in modeling quantum mechanics. To remedy this heretofore unrecognized deficiency, we introduce a new architecture that propagates information back and forth in waves of nonlinear computation. This architecture is still a local-variable model, and it is both computationally and representationally efficient, processing molecules in sublinear time with far fewer parameters than convolutional networks. Wave-like propagation models aromatic and conjugated systems with high accuracy, and even models the impact of small structural changes on large molecules. This new architecture demonstrates that some nonlocal features of quantum chemistry can be efficiently represented in local variable models.


PLOS ONE | 2015

Securely measuring the overlap between private datasets with cryptosets

S. Joshua Swamidass; Matthew Matlock; Leon Rozenblit

Many scientific questions are best approached by sharing data—collected by different groups or across large collaborative networks—into a combined analysis. Unfortunately, some of the most interesting and powerful datasets—like health records, genetic data, and drug discovery data—cannot be freely shared because they contain sensitive information. In many situations, knowing if private datasets overlap determines if it is worthwhile to navigate the institutional, ethical, and legal barriers that govern access to sensitive, private data. We report the first method of publicly measuring the overlap between private datasets that is secure under a malicious model without relying on private protocols or message passing. This method uses a publicly shareable summary of a dataset’s contents, its cryptoset, to estimate its overlap with other datasets. Cryptosets approach “information-theoretic” security, the strongest type of security possible in cryptography, which is not even crackable with infinite computing power. We empirically and theoretically assess both the accuracy of these estimates and the security of the approach, demonstrating that cryptosets are informative, with a stable accuracy, and secure.


bioRxiv | 2018

Standard operating procedure for somatic variant refinement of tumor sequencing data

Erica K. Barnell; Peter Ronning; Katie M. Campbell; Kilannin Krysiak; Benjamin J. Ainscough; Cody Ramirez; Zachary L. Skidmore; Felicia Gomez; Lee Trani; Matthew Matlock; Alex H. Wagner; Sanjay Joshua Swamidass; Malachi Griffith; Obi L. Griffith

Purpose: Manual review of aligned sequencing reads is required to develop a high-quality list of somatic variants from massively parallel sequencing data (MPS). Despite widespread use in analyzing MPS data, there has been little attempt to describe methods for manual review, resulting in high inter- and intra-lab variability in somatic variant detection and characterization of tumors. Methods: Open source software was used to develop an optimal method for manual review setup. We also developed a systemic approach to visually inspect each variant during manual review. Results: We present a standard operating procedures for somatic variant refinement for use by manual reviewers. The approach is enhanced through representative examples of 4 different manual review categories that indicate a reviewer’s confidence in the somatic variant call and 19 annotation tags that contextualize commonly observed sequencing patterns during manual review. Representative examples provide detailed instructions on how to classify variants during manual review to rectify lack of confidence in automated somatic variant detection. Conclusion: Standardization of somatic variant refinement through systematization of manual review will improve the consistency and reproducibility of identifying true somatic variants after automated variant calling.

Collaboration


Dive into the Matthew Matlock's collaboration.

Top Co-Authors

Avatar

S. Joshua Swamidass

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kilannin Krysiak

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Malachi Griffith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Lee Trani

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Obi L. Griffith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Alex H. Wagner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Benjamin J. Ainscough

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Cody Ramirez

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Erica K. Barnell

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Felicia Gomez

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge