Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew McCall is active.

Publication


Featured researches published by Matthew McCall.


The New England Journal of Medicine | 2009

Protection against a Malaria Challenge by Sporozoite Inoculation

Meta Roestenberg; Matthew McCall; Joost Hopman; Jorien Wiersma; Adrian J. F. Luty; Geert Jan van Gemert; Marga van de Vegte-Bolmer; Ben C. L. van Schaijk; Karina Teelen; Theo Arens; Lopke Spaarman; Quirijn de Mast; Will Roeffen; Georges Snounou; Laurent Rénia; Andre van der Ven; Cornelus C. Hermsen; Robert W. Sauerwein

BACKGROUND An effective vaccine for malaria is urgently needed. Naturally acquired immunity to malaria develops slowly, and induction of protection in humans can be achieved artificially by the inoculation of radiation-attenuated sporozoites by means of more than 1000 infective mosquito bites. METHODS We exposed 15 healthy volunteers--with 10 assigned to a vaccine group and 5 assigned to a control group--to bites of mosquitoes once a month for 3 months while they were receiving a prophylactic regimen of chloroquine. The vaccine group was exposed to mosquitoes that were infected with Plasmodium falciparum, and the control group was exposed to mosquitoes that were not infected with the malaria parasite. One month after the discontinuation of chloroquine, protection was assessed by homologous challenge with five mosquitoes infected with P. falciparum. We assessed humoral and cellular responses before vaccination and before the challenge to investigate correlates of protection. RESULTS All 10 subjects in the vaccine group were protected against a malaria challenge with the infected mosquitoes. In contrast, patent parasitemia (i.e., parasites found in the blood on microscopical examination) developed in all five control subjects. Adverse events were mainly reported by vaccinees after the first immunization and by control subjects after the challenge; no serious adverse events occurred. In this model, we identified the induction of parasite-specific pluripotent effector memory T cells producing interferon-gamma, tumor necrosis factor alpha, and interleukin-2 as a promising immunologic marker of protection. CONCLUSIONS Protection against a homologous malaria challenge can be induced by the inoculation of intact sporozoites. (ClinicalTrials.gov number, NCT00442377.)


Proceedings of the National Academy of Sciences of the United States of America | 2007

TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans.

Bart Ferwerda; Matthew McCall; Santos Alonso; Evangelos J. Giamarellos-Bourboulis; Maria Mouktaroudi; Neskuts Izagirre; Din Syafruddin; Gibson Kibiki; Tudor Cristea; Anneke Hijmans; Lutz Hamann; Shoshana Israel; Gehad ElGhazali; Marita Troye-Blomberg; Oliver Kumpf; Boubacar Maiga; Amagana Dolo; Ogobara K. Doumbo; Cornelus C. Hermsen; Anton F. H. Stalenhoef; Reinout van Crevel; Han G. Brunner; Djin-Ye Oh; Ralf R. Schumann; Concepción de la Rúa; Robert W. Sauerwein; Bart Jan Kullberg; Andre van der Ven; Jos W. M. van der Meer; Mihai G. Netea

Infectious diseases exert a constant evolutionary pressure on the genetic makeup of our innate immune system. Polymorphisms in Toll-like receptor 4 (TLR4) have been related to susceptibility to Gram-negative infections and septic shock. Here we show that two polymorphisms of TLR4, Asp299Gly and Thr399Ile, have unique distributions in populations from Africa, Asia, and Europe. Genetic and functional studies are compatible with a model in which the nonsynonymous polymorphism Asp299Gly has evolved as a protective allele against malaria, explaining its high prevalence in subSaharan Africa. However, the same allele could have been disadvantageous after migration of modern humans into Eurasia, putatively because of increased susceptibility to severe bacterial infections. In contrast, the Asp299Gly allele, when present in cosegregation with Thr399Ile to form the Asp299Gly/Thr399Ile haplotype, shows selective neutrality. Polymorphisms in TLR4 exemplify how the interaction between our innate immune system and the infectious pressures in particular environments may have shaped the genetic variations and function of our immune system during the out-of-Africa migration of modern humans.


The Lancet | 2011

Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study

Meta Roestenberg; Anne C. Teirlinck; Matthew McCall; Karina Teelen; Krystelle Nganou Makamdop; Jorien Wiersma; Theo Arens; Pieter Beckers; Geert-Jan van Gemert; Marga van de Vegte-Bolmer; Andre van der Ven; Adrian J. F. Luty; Cornelus C. Hermsen; Robert W. Sauerwein

BACKGROUND We have shown that immunity to infection with Plasmodium falciparum can be induced experimentally in malaria-naive volunteers through immunisation by bites of infected mosquitoes while simultaneously preventing disease with chloroquine prophylaxis. This immunity was associated with parasite-specific production of interferon γ and interleukin 2 by pluripotent effector memory cells in vitro. We aim to explore the persistence of protection and immune responses in the same volunteers. METHODS In an open-label study at the Radboud University Nijmegen Medical Centre (Nijmegen, Netherlands), from November to December, 2009, we rechallenged previously immune volunteers (28 months after immunisation) with the bites of five mosquitoes infected with P falciparum. Newly recruited malaria-naive volunteers served as infection controls. Our primary outcome was the detection of blood-stage parasitaemia by microscopy. We assessed the kinetics of parasitaemia with real-time quantitative PCR (rtPCR) and recorded clinical signs and symptoms. In-vitro production of interferon γ and interleukin 2 by effector memory T cells was studied after stimulation with sporozoites and red blood cells infected with P falciparum. Differences in cellular immune responses between the study groups were assessed with the Mann-Whitney test. This study is registered with ClinicalTrials.gov, number NCT00757887. FINDINGS Four of six immune volunteers were microscopically negative after rechallenge. rtPCR-based detection of blood-stage parasites in these individuals was negative throughout follow-up. Patent parasitaemia was delayed in the remaining two immunised volunteers. In-vitro assays showed the long-term persistence of parasite-specific pluripotent effector memory T-cell responses in protected volunteers. The four protected volunteers reported several mild to moderate adverse events, of which the most commonly reported symptom was headache (one to three episodes per volunteer). The two patients with delayed patency had adverse events similar to those in the control group. INTERPRETATION Artificially induced immunity lasts longer than generally recorded after natural exposure; providing a new avenue of research into the mechanisms of malaria immunity. FUNDING Dioraphte Foundation.


Molecular Medicine | 2008

FUNCTIONAL CONSEQUENCES OF TOLL-LIKE RECEPTOR 4 POLYMORPHISMS

Bart Ferwerda; Matthew McCall; K. Verheijen; B.J. Kullberg; A.J.A.M. van der Ven; J.W.M. van der Meer; M.G. Netea

Toll-like receptor 4 (TLR4) is an important pathogen recognition receptor that recognizes mainly lipopolysaccharide (LPS) of Gram-negative bacteria, but also structures from fungal and mycobacterial pathogens, as well as endogenous ligands. Two nonsynonymous polymorphisms of TLR4, Asp299Gly and Thr399lle, have been suggested to alter the function of the receptor. Some, but not all, studies have proposed that these polymorphisms lead to reduced cytokine response and increased susceptibility to Gram-negative infections. In this review, we compare studies that assessed the effect of the Asp299Gly and Thr399lle polymorphisms on susceptibility to Gram-negative infections and examine the phenotypic consequences of these polymorphisms. In addition, we review the geographical distribution of TLR4 polymorphisms and present a model for evolutionary pressures on the TLR4 genetic make-up.


Journal of Leukocyte Biology | 2010

Interferon-γ—central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria

Matthew McCall; Robert W. Sauerwein

Immune responses against Plasmodium parasites, the causative organisms of malaria, are traditionally dichotomized into pre‐erythrocytic and blood‐stage components. Whereas the central role of cellular responses in pre‐erythrocytic immunity is well established, protection against blood‐stage parasites has generally been ascribed to humoral responses. A number of recent studies, however, have highlighted the existence of cellular immunity against blood‐stage parasites, in particular, the prominence of IFN‐γ production. Here, we have undertaken to chart the contribution of this prototypical cellular cytokine to immunity against pre‐erythrocytic and blood‐stage parasites. We summarize the various antiparasitic effector functions that IFN‐γ serves to induce, review an array of data about its protective effects, and scrutinize evidence for any deleterious, immunopathological outcome in malaria patients. We discuss the activation and contribution of different cellular sources of IFN‐γ production during malaria infection and its regulation in relation to exposure. We conclude that IFN‐γ forms a central mediator of protective immune responses against pre‐erythrocytic and blood‐stage malaria parasites and identify a number of implications for rational malaria vaccine development.


PLOS Pathogens | 2011

Longevity and Composition of Cellular Immune Responses Following Experimental Plasmodium falciparum Malaria Infection in Humans

Anne C. Teirlinck; Matthew McCall; Meta Roestenberg; Anja Scholzen; Rob Woestenenk; Quirijn de Mast; Andre van der Ven; Cornelus C. Hermsen; Adrian J. F. Luty; Robert W. Sauerwein

Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz) and asexual blood-stage (PfRBC) malaria parasites in naïve human volunteers undergoing single (n = 5) or multiple (n = 10) experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2) responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only ‘adaptive’ but also ‘innate’ lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO+ CD62L- effector memory (EM) phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ+IL-2+) EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P. falciparum, with a persisting contribution by not only adaptive but also (semi-)innate lymphocyte subsets. The implications hereof are positive for malaria vaccine development, but focus attention on those factors potentially inhibiting such responses in the field.


Journal of Immunology | 2007

Plasmodium falciparum Infection Causes Proinflammatory Priming of Human TLR Responses

Matthew McCall; Mihai G. Netea; Cornelus C. Hermsen; Trees Jansen; Liesbeth Jacobs; Douglas T. Golenbock; Andre van der Ven; Robert W. Sauerwein

TLRs are a major group of pattern recognition receptors that are crucial in initiating innate immune responses and are capable of recognizing Plasmodium ligands. We have investigated TLR responses during acute experimental P. falciparum (P.f.) infection in 15 malaria-naive volunteers. TLR-4 responses in whole blood ex vivo stimulations were characterized by significantly (p < 0.01) up-regulated proinflammatory cytokine production during infection compared with baseline, whereas TLR-2/TLR-1 responses demonstrated increases in both proinflammatory and anti-inflammatory cytokine production. Responses through other TLRs were less obviously modified by malaria infection. The degree to which proinflammatory TLR responses were boosted early in infection was partially prognostic of clinical inflammatory parameters during the subsequent clinical course. Although simultaneous costimulation of human PBMC with P.f. lysate and specific TLR stimuli in vitro did not induce synergistic effects on cytokine synthesis, PBMC started to respond to subsequent TLR-4 and TLR-2 stimulation with significantly (p < 0.05) increased TNF-α and reduced IL-10 production following increasing periods of preincubation with P.f. Ag. In contrast, preincubation with preparations derived from other parasitic, bacterial, and fungal pathogens strongly suppressed subsequent TLR responses. Taken together, P.f. primes human TLR responses toward a more proinflammatory cytokine profile both in vitro and in vivo, a characteristic exceptional among microorganisms.


The Journal of Infectious Diseases | 2007

Thrombocytopenia and Release of Activated von Willebrand Factor during Early Plasmodium falciparum Malaria

Quirijn de Mast; Evelyn Groot; Peter J. Lenting; Philip G. de Groot; Matthew McCall; Robert W. Sauerwein; R. Fijnheer; Andre van der Ven

BACKGROUND Thrombocytopenia occurs early during malarial infection, but its underlying mechanism is unclear. Secretion of von Willebrand factor (vWF) occurs on endothelial cell activation, and it plays an important role in platelet agglutination. METHODS In 14 healthy human volunteers who were experimentally infected with Plasmodium falciparum, we studied vWF secretion and proteolysis as well as the relationship between changes in circulating platelet numbers and plasma levels of vWF and activated vWF. RESULTS Platelet numbers started to decrease between days 7 and 9 after infection, which corresponded to the earliest phase of blood-stage infection. With the decrease in platelet numbers, levels of vWF, vWF propeptide (markers of chronic and acute endothelial cell activation, respectively), and activated vWF (exposing the glycoprotein Ib alpha platelet-binding domain) increased proportionally. A strong, reciprocal relationship was observed between platelet numbers and levels of both vWF and activated vWF. Activity of the vWF-cleaving protease ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) -- a regulator of vWF activity -- remained unchanged. CONCLUSIONS P. falciparum induces systemic acute endothelial cell activation and release of activated vWF immediately after the onset of blood-stage infection. The resulting platelet agglutination may result in early thrombocytopenia and may play a role in the pathogenesis of malaria.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock.

Bart Ferwerda; Santos Alonso; Kathy Banahan; Matthew McCall; Evangelos J. Giamarellos-Bourboulis; Bart P. Ramakers; Maria Mouktaroudi; Pamela R. Fain; Neskuts Izagirre; Din Syafruddin; Tudor Cristea; Frank P. Mockenhaupt; Marita Troye-Blomberg; Oliver Kumpf; Boubacar Maiga; Amagana Dolo; Ogobara K. Doumbo; Santhosh Sundaresan; George Bedu-Addo; Reinout van Crevel; Lutz Hamann; Djin-Ye Oh; Ralf R. Schumann; Leo A. B. Joosten; Concepción de la Rúa; Robert W. Sauerwein; Joost P. H. Drenth; Bart Jan Kullberg; Andre van der Ven; Adrian V. S. Hill

Adequate responses by our innate immune system toward invading pathogens were of vital importance for surviving infections, especially before the antibiotic era. Recently, a polymorphism in Mal (Ser180Leu, TIRAP rs8177374), an important adaptor protein downstream of the Toll-like receptor (TLR) 2 and 4 pathways, has been described to provide protection against a broad range of infectious pathogens. We assessed the functional effects of this polymorphism in human experimental endotoxemia, and we demonstrate that individuals bearing the TIRAP 180L allele display an increased, innate immune response to TLR4 and TLR2 ligands, but not to TLR9 stimulation. This phenotype has been related to an increased resistance to infection. However, an overshoot in the release of proinflammatory cytokines by TIRAP 180L homozygous individuals suggests a scenario of balanced evolution. We have also investigated the worldwide distribution of the Ser180Leu polymorphism in 14 populations around the globe to correlate the genetic makeup of TIRAP with the local infectious pressures. Based on the immunological, clinical, and genetic data, we propose that this mutation might have been selected in West Eurasia during the early settlement of this region after the out-of-Africa migration of modern Homo sapiens. This combination of functional and genetic data provides unique insights to our understanding of the pathogenesis of sepsis.


The Journal of Infectious Diseases | 2009

Responses to Malarial Antigens Are Altered in Helminth-Infected Children

Franca C. Hartgers; Benedicta B. Obeng; Yvonne C. M. Kruize; Annemiek Dijkhuis; Matthew McCall; Robert W. Sauerwein; Adrian J. F. Luty; Daniel A. Boakye; Maria Yazdanbakhsh

Malaria and helminth infections often coincide in the same tropical regions. Studies of the consequences of helminth and malaria coinfection in humans have been few and are mainly epidemiological, with little information on cellular immune responses. In this study, we investigated the antimalarial immune responses of Ghanaian children living in a rural area with a high prevalence of both helminth infection and Plasmodium falciparum infection. Whole blood specimens were cultured with P. falciparum-infected red blood cells (iRBCs), and pro- and anti-inflammatory cytokines and immune regulatory molecules were measured. In response to iRBCs, levels of interleukin (IL)-10, but not tumor necrosis factor-alpha,were higher in samples from helminth-infected children than in those from uninfected children, as was expression of the regulatory molecules suppressor of cytokine signaling (SOCS)-3, Foxp3, and programmed death (PD)-1. Furthermore, a significant correlation was found between SOCS-3 gene expression and IL-10 production. These results indicate that the presence of helminth infection modulates the immune response to malarial parasites, making it more anti-inflammatory.

Collaboration


Dive into the Matthew McCall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre van der Ven

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meta Roestenberg

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Bart Ferwerda

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Joost Hopman

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Mihai G. Netea

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Quirijn de Mast

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Adrian J. F. Luty

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge