Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew Myers is active.

Publication


Featured researches published by Matthew Myers.


Sensors | 2009

Mid-infrared sensing of organic pollutants in aqueous environments.

Bobby Pejcic; Matthew Myers; Andrew Ross

The development of chemical sensors for monitoring the levels of organic pollutants in the aquatic environment has received a great deal of attention in recent decades. In particular, the mid-infrared (MIR) sensor based on attenuated total reflectance (ATR) is a promising analytical tool that has been used to detect a variety of hydrocarbon compounds (i.e., aromatics, alkyl halides, phenols, etc.) dissolved in water. It has been shown that under certain conditions the MIR-ATR sensor is capable of achieving detection limits in the 10–100 ppb concentration range. Since the infrared spectral features of every single organic molecule are unique, the sensor is highly selective, making it possible to distinguish between many different analytes simultaneously. This review paper discusses some of the parameters (i.e., membrane type, film thickness, conditioning) that dictate MIR-ATR sensor response. The performance of various chemoselective membranes which are used in the fabrication of the sensor will be evaluated. Some of the challenges associated with long-term environmental monitoring are also discussed.


Talanta | 2011

Modifying the response of a polymer-based quartz crystal microbalance hydrocarbon sensor with functionalized carbon nanotubes

Bobby Pejcic; Matthew Myers; Nilukshi Ranwala; Leigh Boyd; Murray V. Baker; Andrew Ross

This report compares the performance of polymer and carbon nanotube-polymer composite membranes on a quartz crystal microbalance (QCM) sensor for the detection of aromatic hydrocarbons (benzene, toluene, ethylbenzene, p-xylene and naphthalene) in aqueous solutions. Several different polymers (polystyrene, polystyrene-co-butadiene, polyisobutylene and polybutadiene) and types of functionalized carbon nanotubes (multi-walled and single-walled carbon nanotubes) were investigated at varying carbon nanotube (CNT) loading levels and film thicknesses. In a majority of instances, the difference in response between membranes comprising pure polymer and membranes containing 10% (w/w) carbon nanotubes were not statistically significant. However, a notable exception is the decreasing sensitivity towards p-xylene with increasing carbon nanotube content in a polybutadiene film. This variation in sensitivity can be attributed to a change in the sorption mechanism from absorption into the polymer phase to adsorption onto the carbon nanotube sidewalls. With much thicker coatings of 10% (w/w) carbon nanotube in polybutadiene, the sensitivity towards toluene was higher compared to the pure polymer. The increased toluene sensitivity may be partially attributed to an increase in the sorption capacity of a carbon nanotube polymer composite film relative to its corresponding pure polymer film. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) measurements were performed to understand the mechanism of sorption and these studies showed that the addition of functionalized CNT to the polymer increases the absorption of certain types of hydrocarbons. This study demonstrates that carbon nanotubes can be incorporated into a polymer-coated QCM sensor and that composite films may be used to modify the QCM response and selectivity during the analysis of complex hydrocarbon mixtures.


Analytical Chemistry | 2012

Using Plasticizers to Control the Hydrocarbon Selectivity of a Poly(Methyl Methacrylate)-Coated Quartz Crystal Microbalance Sensor

Bobby Pejcic; Emma Crooke; Leigh Boyd; Cara M. Doherty; Anita J. Hill; Matthew Myers; Cameron White

Chemical sensors based on a polymer coated quartz crystal microbalance (QCM) generally present poor molecular selectivity for compounds that contain similar functional groups and possess the same chemical properties. This paper shows for the first time that the selectivity and sensitivity of a poly(methyl methacrylate) (PMMA) based QCM sensor can be significantly enhanced for aromatic hydrocarbons by incorporating a plasticizer into the polymer film. The sensor was fabricated by spin coating PMMA onto a quartz crystal, and the influence of plasticizer type and amount on the response was evaluated. It was shown that the hydrocarbon sensitivity of plasticizer-free PMMA is negligible, while the sensitivity of plasticized PMMA was similar to or in some cases greater relative to highly responsive rubbery polymers such as polyisobutylene (PIB). Detection limits of 4.0, 1.5, 0.4, 0.6, and 0.1 ppm were obtained on a PMMA film containing 25% w/w di(2-ethylhexyl) phthalate for benzene, toluene, ethylbenzene, p-xylene, and naphthalene, respectively. We found that at low plasticizer levels (∼10% w/w) the PMMA film was more sensitive toward ethylbenzene and p-xylene over naphthalene when compared to a PIB film under similar measurement conditions. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) measurements were performed to understand the sensing mechanism, and these studies confirmed a higher hydrocarbon uptake by PMMA in the presence of plasticizer. Positron annihilation lifetime spectroscopy (PALS) studies detected variations in the free volume properties of the polymer films as a function of plasticizer content. The accessible free volume as measured by PALS was significantly less in the PMMA films compared to the PIB, and this result correlates favorably with differences in the QCM response pattern. The QCM results have been rationalized in terms of free volume theory which is responsible for the higher hydrocarbon diffusion/sorption with increased plasticizer content.


Analytical Chemistry | 2014

Fingerprinting oils in water via their dissolved VOC pattern using mid-infrared sensors.

Thomas Schädle; Bobby Pejcic; Matthew Myers; Boris Mizaikoff

An infrared attenuated total reflection (IR-ATR) method for detecting, differentiating, and quantifying hydrocarbons dissolved in water relevant for oil spills by evaluating the fingerprint of the volatile organic compounds (VOCs) associated with individual oil types in the mid-infrared spectral range (i.e., 800-600 cm(-1)) is presented. In this spectral regime, these hydrocarbons provide distinctive absorption features, which may be used to identify specific hydrocarbon patterns that are characteristic for different crude and refined oils. For analyzing the VOC fingerprint resulting from various oil samples, aqueous solutions containing the dissolved hydrocarbons from different crude oils (i.e., types Barrow, Goodwyn, and Saladin) and refined oils (i.e., Petrol and Diesel) were analyzed using a ZnSe ATR waveguide as the optical sensing element. To minimize interferences from the surrounding water matrix and for amplifying the VOC signatures by enrichment, a thin layer of poly(ethylene-co-propylene) was coated onto the ATR waveguide surface, thereby enabling the establishment of suitable calibration functions for the quantification of characteristic concentration patterns of the detected VOCs. Multivariate data analysis was then used for a prelininary classification of various oil-types via their VOC patterns.


Analytica Chimica Acta | 2016

Mercury(II) selective sensors based on AlGaN/GaN transistors

Mohsen Asadnia; Matthew Myers; Nima Dehdashti Akhavan; Kane Michael O'Donnell; Gilberto A. Umana-Membreno; Umesh K. Mishra; Brett Nener; Murray V. Baker; Giacinta Parish

This work presents the first polymer approach to detect metal ions using AlGaN/GaN transistor-based sensor. The sensor utilised an AlGaN/GaN high electron mobility transistor-type structure by functionalising the gate area with a polyvinyl chloride (PVC) based ion selective membrane. Sensors based on this technology are portable, robust and typically highly sensitive to the target analyte; in this case Hg2+. This sensor showed a rapid and stable response when it was introduced to solutions of varying Hg2+ concentrations. At pH 2.8 in a 10-2xa0M KNO3 ion buffer, a detection limit below 10-8xa0M and a linear response range between 10-8xa0M-10-4xa0M were achieved. This detection limit is an order of magnitude lower than the reported detection limit of 10-7xa0M for thioglycolic acid monolayer functionalised AlGaN/GaN HEMT devices. Detection limits of approximately 10-7xa0M and 10-6xa0M in 10-2xa0M Cd(NO3)2 and 10-2xa0Mxa0Pb(NO3)2 ion buffers were also achieved, respectively. Furthermore, we show that the apparent gate response was near-Nernstian under various conditions. X-ray photoelectron spectroscopy (XPS) experiments confirmed that the sensing membrane is reversible after being exposed to Hg2+ solution and rinsed with deionised water. The success of this study precedes the development of this technology in selectively sensing multiple ions in water with use of the appropriate polymer based membranes on arrays of devices.


Analytica Chimica Acta | 2011

The impact of water and hydrocarbon concentration on the sensitivity of a polymer-based quartz crystal microbalance sensor for organic compounds

Bobby Pejcic; Emma Crooke; Cara M. Doherty; Anita J. Hill; Matthew Myers; Xiubin Qi; Andrew Ross

Long-term environmental monitoring of organic compounds in natural waters requires sensors that respond reproducibly and linearly over a wide concentration range, and do not degrade with time. Although polymer coated piezoelectric based sensors have been widely used to detect hydrocarbons in aqueous solution, very little information exists regarding their stability and suitability over extended periods in water. In this investigation, the influence of water aging on the response of various polymer membranes [polybutadiene (PB), polyisobutylene (PIB), polystyrene (PS), polystyrene-co-butadiene (PSB)] was studied using the quartz crystal microbalance (QCM). QCM measurements revealed a modest increase in sensitivity towards toluene for PB and PIB membranes at concentrations above 90 ppm after aging in water for 4 days. In contrast, the sensitivity of PS and PSB coated QCM sensors depended significantly on the toluene concentration and increased considerably at concentrations above 90 ppm after aging in water for 4 days. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) showed that there is a change in the sorption mechanism at higher toluene levels for PS and PSB. Positron annihilation lifetime spectroscopy (PALS) studies were performed to investigate the free volume properties of all polymers and to monitor any changes in the free volume size and distribution due to water and toluene exposure. The PALS did not detect any considerable variation in the free volume properties of the polymer films as a function of solution composition and soaking time, implying that viscoelastic and/or interfacial processes (i.e. surface area changes) are probably responsible for variations in the QCM sensitivity at high hydrocarbon concentrations. The results suggest that polymer membrane conditioning in water is an issue that needs to be considered when performing QCM measurements in the aqueous phase. In addition, the study shows that the hydrocarbon response is concentration dependant for polymers with a high glass transition temperature, and this feature is often neglected when comparing sensor sensitivity in the literature.


Analytical Chemistry | 2015

Mid-Infrared Spectroscopic Method for the Identification and Quantification of Dissolved Oil Components in Marine Environments

Robert Stach; Bobby Pejcic; Emma Crooke; Matthew Myers; Boris Mizaikoff

The use of mid-infrared sensors based on conventional spectroscopic equipment for oil spill monitoring and fingerprinting in aqueous systems has to date been mainly confined to laboratory environments. This paper presents a portable-based mid-infrared attenuated total reflectance (MIR-ATR) sensor system that was used to quantify a number of environmentally relevant hydrocarbon contaminants in marine water. The sensor comprises a polymer-coated diamond waveguide in combination with a room-temperature operated pyroelectric detector, and the analytical performance was optimized by evaluating the influence of polymer composition, polymer film thickness, and solution flow rate on the sensor response. Uncertainties regarding the analytical performance and instrument specifications for dissolved oil detection were investigated using real-world seawater matrices. The reliability of the sensor was tested by exposition to known volumes of different oils; crude oil and diesel samples were equilibrated with seawater and then analyzed using the developed MIR-ATR sensor system. For validation, gas chromatographic measurements were performed revealing that the MIR-ATR sensor is a promising on-site monitoring tool for determining the concentration of a range of dissolved oil components in seawater at ppb to ppm levels.


Talanta | 2014

A mid-infrared sensor for the determination of perfluorocarbon-based compounds in aquatic systems for geosequestration purposes

Florian Rauh; Matthias Schwenk; Bobby Pejcic; Matthew Myers; Koon-Bay Ho; Linda Stalker; Boris Mizaikoff

Perfluorocarbon (PFC) compounds have been used as chemical tracer molecules to understand the movement of supercritical carbon dioxide for geosequestration monitoring and verification purposes. A commonly used method for detecting PFCs involves the collection of a sample from either soil-gas or the atmosphere via carbon-based sorbents which are then analyzed in a laboratory. However, PFC analysis in aquatic environments is neglected and this is an issue that needs to be considered since the PFC is likely to undergo permeation through the overlying water formations. This paper presents for the first time an innovative analytical method for the trace level in situ detection of PFCs in water. It reports on the development of a sensor based on mid-infrared attenuated total reflection (MIR-ATR) spectroscopy for determining the concentration of perfluoromethylcyclohexane (PMCH) and perfluoro-1,3-dimethylcyclohexane (PDCH) in aquatic systems. The sensor comprises a zinc selenide waveguide with the surface modified by a thin polymer film. The sensitivity of this device was investigated as a function of polymer type, coating thickness, and solution flow rates. The limit of detection (LOD) was determined to be 23 ppb and 79 ppb for PMCH and PDCH, respectively when using a 5 μm thick polyisobutylene (PIB) coated waveguide. This study has shown that the MIR-ATR sensor can be used to directly quantify PFC-based chemical tracer compounds in water over the 20-400 ppb concentration range.


Analytica Chimica Acta | 2014

Pore size dynamics in interpenetrated metal organic frameworks for selective sensing of aromatic compounds

Matthew Myers; Anna Podolska; Charles Heath; Murray V. Baker; Bobby Pejcic

The two-fold interpenetrated metal-organic framework, [Zn2(bdc)2(dpNDI)]n (bdc=1,4-benzenedicarboxylate, dpNDI=NN-di(4-pyridyl)-1,4,5,8-naphthalenediimide) can undergo structural re-arrangement upon adsorption of chemical species changing its pore structure. For a competitive binding process with multiple analytes of different sizes and geometries, the interpenetrated framework will adopt a conformation to maximize the overall binding interactions. In this study, we show for binary mixtures that there is a high selectivity for the larger methylated aromatic compounds, toluene and p-xylene, over the small non-methylated benzene. The dpNDI moiety within [Zn2(bdc)2(dpNDI)]n forms an exciplex with these aromatic compounds. The emission wavelength is dependent on the strength of the host-guest CT interaction allowing these compounds to be distinguished. We show that the sorption selectivity characteristics can have a significant impact on the fluorescence sensor response of [Zn2(bdc)2(dpNDI)]n towards environmentally important hydrocarbons based contaminants (i.e., BTEX, PAH).


New Journal of Chemistry | 2017

Calixarene-polymer hybrid film for selective detection of hydrocarbons in water

Charles Heath; Bobby Pejcic; Matthew Myers

One major issue that precludes the application of chemical sensors for the analysis and quantification of dissolved hydrocarbon contaminants in environmental waters is interference from similar types of organic molecules. Polymer-based sensing films are used extensively to interact with certain classes of organic compounds; however, these materials have not been able to achieve sufficient selectivity when analysing complex multicomponent hydrocarbon mixtures in real aquatic systems. Polymer composite materials are an alternative approach towards improving the selectivity and analytical response of sensors for hydrocarbons. In this study, calixarene–polyisobutylene composite films were synthesised via a solvent casting method and the structural and sorption properties were investigated using infrared spectroscopy. The type and amount of calixarene in polyisobutylene was varied and it was shown that the calixarene content in the film plays a significant role on the hydrocarbon sorption mechanism. Scanning electron microscope and optical microscope studies revealed the formation of calixarene microparticles within the polymer film and that this may be responsible for the observed differences in hydrocarbon sensitivity. We demonstrate using toluene and ethylbenzene that the molecular selectivity of polymer films can be tailored by adjusting the calixarene type and concentration.

Collaboration


Dive into the Matthew Myers's collaboration.

Top Co-Authors

Avatar

Bobby Pejcic

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Murray V. Baker

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Brett Nener

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Giacinta Parish

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Cameron White

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Andrew Ross

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Charles Heath

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Linda Stalker

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge